HDI alternatives

Frank Meier Aeschbacher Paul Scherrer Institute

7 March 2022

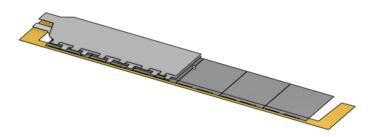
Overview

Concept of a aluminium-copper flex

Bonding and interposer

Parameters

Plans at PSI


For comparison: a commercially available Cu flex (SwissPCB)

Conclusions

- ▶ The current, sad situation with LTU calld for a mitigation plan
- Here I'm showing a concept I already had six years ago
- It is a hybrid copper-aluminium solution

Barebone sketch.

A U-shaped HeiCoFlex copper flex for signals.

Two layers of aluminium for VDD and GND (shown for oine half ladder).

HeiCoFlex is a ultra thin technology for flexes by HighTec MC AG in Lenzburg, Switzerland.

Used in CMS phase 0 and phase 1 pixels by PSI.

Material	X0 (cm)	Thickness (µm)	x/X0	x/X0 (‰)	Sum (‰)
Cu	1.44	2	0.00013888	0.139	0.139
Polyimid	28.6	5	0.00001748	0.017	0.156
Cu	1.44	2	0.00013888	0.139	0.295
Polyimid	28.6	5	0.00001748	0.017	0.313

HeiCoFlex

Note: We strive for a 1-layer design (see later), so count only half the total thickness.

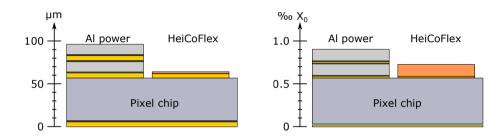
The aluminium power stack would look like this:

Material	X0 (cm)	Thickness (µm)	x/X0	x/X0 (‰)	Sum (‰)
AI	8.89	12	0.00013498	0.135	0.135
Araldite	39.9	1	0.00000250	0.003	0.137
Polyimid	28.6	6	0.00002097	0.021	0.158
Araldite	39.9	1	0.00000250	0.003	0.161
AI	8.89	12	0.00013498	0.135	0.296

Alu power layers

Each layer would max on the available surface to have the lowest possible R.

With the 6 μ m polyimide, $C \approx 6 \, \text{pF}$. Maybe electrically helpful? We could go thinner using Mylar and increase C further.


The sensors would be gloud to one layer of Polyimide:

Material	X0 (cm)	Thickness (µm)	x/X0	x/X0 (‰)	Sum (‰)
Polyimid	28.6	6	0.00002097	0.021	0.021
Araldite	39.9	1	0.00000250	0.003	0.023
Si	9.34	50	0.00053533	0.535	0.559

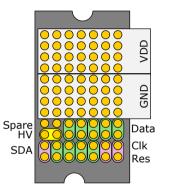
Sensors

In total the stack would look like

Note 1: Drawn to illustrate total stack thickness. The HeiCoFlex would be on the bottom, of course. Note 2: No need for impedance controlled Al layers allow to drop some polyimide. Hence thinner than LTU. M_3

Bonding and interposer

Connections to chip

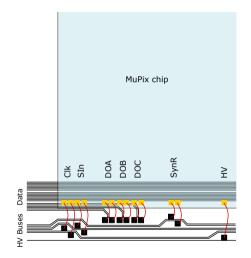

- ► Signals: Al wirebonds (25 µm thick)
- Power: SpTAB

Connections to interposer

- Signals go directly to interposer pad-out
- SpTAB bonds on HeiCoFlex to connect the power layers
- Interposer area will need a stiffener as HeiCoFlex is too flexible

Bonding and interposer

The pad arrangement on the interposer must follow an optimised pattern for this technology:


All signals occupy the bottom 4 rows. On HeiCoFlex, routing between the pads is no problem (a few μ m track width).

Power uses the 2×4 upper rows. Has to be grouped together for ultimately low *R*.

The interposer stretch of the signals is only maybe 0.1 mm, so this should not hamper the signal integrity.

Bonding and interposer

Sketch of a possible routing and bonding scheme.

HeiCoFlex can go down to $4 \mu m$ trace width, hence expect it to be denser. Z will govern the choice, of course.

Wire bonds seem feasible. No vias in this layout needed.

NB: Power would be SpTAB, excluded from this skech.

Parameters

For reference, these are the parameters used:

Material	Formula	σ	ho	X_0	
		S/m	g/cm^3	${\rm g/cm}^2$	cm
Silicon	Si	$5 imes 10^{-4}$	2.34	21.8	9.34
Copper	Cu	$5.8 imes 10^7$	8.92	12.86	1.44
Aluminium	AI	$3.7 imes 10^7$	2.70	24.0	8.89
Polyimide	$C_{22}H_{10}N_2O_5$	_	1.42	40.6	28.6
Araldite 2011	$C_{18}H_{20}O_3$	-	1.05	41.9	39.9
Mylar (PET)	$C_{10}H_8O_4$	_	1.38	40.0	28.5

A few remarks on the HeiCoFlex design

- > This is an expensive technology. Cost drivers are layers and vias.
- Hence we'd like to put all effort into a single layer design.

- ▶ Preparation of an HDI design using HeiCoFlex plus AI for a vertex detector ladder.
- Check with companies, come up with a cost estimate.
- Fabricate a prototype.

Team: Hans-Christian Kästli, Silvan Streuli, FMA

This proposal also scales to the outer layer ladders. After a vertex demonstrator this would be next.

Plans at PSI

Possible assembly sequence

- $1. \ {\sf Place HeiCoFlex}$ and polyimide on chuck
- 2. Apply glue and place chips (sequentally). Let cure.
- 3. Apply glue and place preassembled power layers
- 4. Bonding: wirebonds and SpTAB (use two bonders or batch-wise)
- 5. Test ladder

The assembly of the power layers would be manual using jigs. This is ok for the vertex ladders.

For comparison: a commercially available Cu flex (SwissPCB)

A stack derived from what we use for the endpiece flex. Just two layers:

Material	X0 (cm)	Thickness (µm)	x/X0	x/X0 (‰)	Sum (‰)
Photoresist	30	12	0.00004	0.040	0.040
Cu	1.44	12	0.00083333	0.833	0.873
Polyimide	28.6	12	0.00004195	0.042	0.915
Cu	1.44	12	0.00083333	0.833	1.749
Photoresist	30	12	0.00004	0.040	1.789

SwissPCB stack (not optimised)

Plus 0.535‰ for the silicon gives **2.32‰** x/X_0 for one detector layer.

Note: To have the same sheet resistance than $12\,\mu m$ Al, $7.7\,\mu m$ of Cu would suffice (subject to availability)

Conclusions

- ► A proposal for a hybrid copper-aluminium HDI has been made.
- ► The concept looks feasible.
- A plan for a first demonstrator exists.
- Should be doable in the next months. Manpower secured.

A remark on LTU: I'd like to recommend finishing all designs for them. Miracles are a rare thing but " $\varepsilon > 0$ " holds true.

ENCORE

