

Hans-H. Braun :: Paul Scherrer Institut

Introduction SLS2.0 Tour

LEAPS 5th LEAPS plenary meeting, PSI, Okt. 26-28, 2022

Swiss Light Source, SLS For more than 20 years very successful operating as a user facility with presently 19 user beamlines

Geographic distribution of SLS users

Denmark _ South Korea Russia China1% 1% 1% 2%_ Japan 2% Italy Spain 2% 2%_ PSI 25% Netherlands_ 3% United States 4% Sweden 5% Germany 19% Switzerland except PSI United Kingdom 16% 5% France 5%

Geographic distribution of SLS beamtime 2019

(*) others: 19 countries with less than 1.0%

SLS today

- Lattice type **TBA**
- Circumference 288 m
- 3× long, 3× medium,
 6× short straights
- total straight length ~ 80 m
- Beam current 400 mA
- Beam energy 2.41 GeV
- Emittance 5500 pm

SLS 2.0

maintained

- Circumference 288 m
- **3**× long, **3**× medium, **6**× short straights
- total straight length ~ 80 m
- Beam current 400 mA

almost maintained

• Source point positions | shifts | < 70 mm |

improved

2024

- Lattice type **7 bend achromat**
- Emittance 157 pm
 - Energy 2.7 GeV

SLS 2.0, Goals and methods

Project Goal

Continue to provide SLS users optimum conditions for their experiments

Methods

New storage ring in existing building with antibend MBA lattice and new insertion devices \rightarrow Increased photon brilliance \rightarrow higher resolution, faster measurements, larger samples

Increase of beam energy from 2.4 GeV to 2.7 GeV, s.c. superbends and HTS undulators \rightarrow Increased X-ray flux

 \rightarrow Access to shorter X-ray wavelength

Some new beamlines, many upgraded beamlines \rightarrow New scientific opportunities

New concepts for data acquisition, processing and storage \rightarrow Capability for increased data rate and new sophisticated analysis algorithm

More radiated X-ray power for users Less electricity consumption

	$SLS \rightarrow SLS2.0$
E _e -	$2.4~{ m GeV} ightarrow 2.7~{ m GeV}$
P _{SR}	310 kW $ ightarrow$ 365 kW
W _{elec} /y	24 GWh $ ightarrow$ 17 GWh

Key savings:

 $\begin{array}{l} \mbox{Electromagnets} \rightarrow \mbox{ permanent magnets} \\ \mbox{Klystrons} \rightarrow \mbox{ solid state amplifiers} \\ \mbox{Standard pumps} \rightarrow \mbox{ regulated pumps for cooling} \end{array}$

PAUL SCHERRER INSTITUT SLS 2.0 Magnet Prototypes and Superbend

 Ξ^3

m 2

BN: Main Dipole magnet

ANM: Reverse bend and quadrupole magnet

OC: Combined quadrupole, skew quadrupole and octupole magnet

Vacuum chambers for SLS 2.0

Key technologies: Precision machining, wire erosion, UHV brazing, NEG coating, 3D modelling

TomCat tomography beamline

PAUL SCHERRER INSTITUT

Swiss Light Source SLS 2.0

all all a