2p-1s Cm-248 analysis

Stella Vogiatzi, 06.05.2022

E/RI vs dQ vs dR dependence

The new energy and relative intensity theoretical predictions of Natalia sent on 08/04/2022 are calculated for the $\mathrm{dR}=\frac{\mathrm{R}}{\mathrm{R}_{0}}$ and $\mathrm{dQ}=\frac{\mathrm{Q}}{\mathrm{Q}_{0}}$ values - where R_{0} is the value of Angeli et al and Q_{0} is the $12.04 \mathrm{~b}-$ in a 5×5 grid of $(\mathrm{dR}, \mathrm{dQ})$ where, $\mathrm{dR}=1.01+/-$ $\{0.001,0.1\} \& d Q=1.00+/-\{0.001,0.1\}$, meaning for:

- $d R=[1.0,1.009,1.01,1.011,1.02]$
- $d Q=[0.99,0.999,1.0,1.001,1.01]$
in all combinations of $d Q$ and $d R$, e.g. $(d Q, d R)=(0.99,1),.(0.99,1.009), \ldots,(0.99,1.02),(0.999,1),. \ldots,(1.01,1.02)$.

The question is \rightarrow what is the relation that describes the energy / relative intensity dependence on both dQ and $d R$? \Rightarrow see next slide

E/RI vs dQ vs dR dependence

Using the script in /psi/home/vogiatzi_s/248Cm_dRvsdQ_dependencies/: EnergyVSdQVSdRSpace.ipynb (or versions/EnergyVSdQVSdRSpace-v3.ipynb), I load Natalia's values (sent on 08/04/2022) after I have manually ordered the transitions in the file.

Below I plot the energy as a function of the $d R$ and dQ values. A 2nd degree polynomial function on both the $d R$ and dQ values is fitted:
$E n=c_{0} \cdot 1+c_{1} \cdot d R+c_{2} \cdot d Q+c_{3} \cdot \mathrm{dR}^{2}+\mathrm{c}_{4} \cdot \mathrm{dR}^{2} \cdot \mathrm{dQ}+\mathrm{c}_{5} \cdot \mathrm{dR}^{2} \cdot \mathrm{dQ}^{2}+\mathrm{c}_{6} \cdot \mathrm{dQ}^{2}+\mathrm{c}_{7} \cdot \mathrm{dR} \cdot \mathrm{dQ}^{2}+\mathrm{c}_{8} \cdot \mathrm{dR} \cdot \mathrm{dQ}$
This actually corresponds to
$E=E 0+E 1 \cdot d R+E 2 \cdot d R^{2}=\left(a_{00}+a_{01} \cdot d Q+a_{02} \cdot d Q^{2}\right)+\left(a_{10}+a_{11} \cdot d Q+a_{12} \cdot d Q^{2}\right) \cdot d R+\left(a_{20}+a_{21} \cdot d Q+a_{22} \cdot d Q^{2}\right) \cdot d R^{2}$, where $a_{00}=c_{0}, a_{01}=c_{2}, a_{02}=c_{6}, a_{10}=c_{1}, a_{11}=c_{8}, a_{12}=c_{7}, a_{20}=c_{3}, a_{21}=c_{4}, a_{22}=c_{5}$. The surface with the obtained $\mathrm{c}_{0}-\mathrm{c}_{8}$ coefficients is plotted in purple colour. The orange points are Natalia's values. Similarly for the relative intensity.

transition-2

There is a different set of $\mathrm{c}_{0}-\mathrm{c}_{8}$ coefficients for each transition for energy and a different one for relative intensity.

transition-2

E/RI vs dQ vs dR dependence

Below I plot the energy / relative intensity as a function of $d Q$ for $d R=1.0$ and as a function of $d R$ for $d Q=0.99$ for transition-2 as an example; Natalia's energies (orange points) and $\mathrm{En} / \mathrm{RI}=\mathrm{c}_{0} \cdot 1+\mathrm{c}_{1} \cdot \mathrm{dR}+\mathrm{c}_{2} \cdot \mathrm{dQ}+\mathrm{c}_{3} \cdot \mathrm{dR}^{2}+\mathrm{c}_{4} \cdot \mathrm{dR}^{2} \cdot \mathrm{dQ}+\mathrm{c}_{5} \cdot \mathrm{dR}^{2} \cdot \mathrm{dQ}^{2}+\mathrm{c}_{6} \cdot \mathrm{dQ}^{2}+\mathrm{c}_{7} \cdot \mathrm{dR} \cdot \mathrm{dQ} \mathrm{Q}^{2}+\mathrm{c}_{8} \cdot \mathrm{dR} \cdot \mathrm{dQ}$ function (purple line).

E/RI vs dQ vs dR dependence

Below I plot the dependence of E0 / E1 / E2 on the dQ value as $\left(a_{00}+a_{01} \cdot d Q+a_{02} \cdot d Q^{2}\right) /\left(a_{10}+a_{11} \cdot d Q+a_{12} \cdot d Q^{2}\right) /\left(a_{20}+a_{21} \cdot d Q+a_{22} \cdot d Q^{2}\right)$, respectively, for transition-2. Similarly for the RIO, RI1, RI2.

Fitting Cm-248

For each transition, I use the following formulas:
$\mathrm{En}=\mathrm{c}_{0} \cdot 1+\mathrm{c}_{1} \cdot \mathrm{dR}+\mathrm{c}_{2} \cdot \mathrm{dQ}+\mathrm{c}_{3} \cdot \mathrm{dR}^{2}+\mathrm{c}_{4} \cdot \mathrm{dR}^{2} \cdot \mathrm{dQ}+\mathrm{c}_{5} \cdot \mathrm{dR}^{2} \cdot \mathrm{dQ}^{2}+\mathrm{c}_{6} \cdot \mathrm{dQ}^{2}+\mathrm{c}_{7} \cdot \mathrm{dR} \cdot \mathrm{dQ}^{2}+\mathrm{c}_{8} \cdot \mathrm{dR} \cdot \mathrm{dQ}$ $R I=c_{0} \cdot 1+c_{1} \cdot d R+c_{2} \cdot d Q+c_{3} \cdot d R^{2}+c_{4} \cdot d R^{2} \cdot d Q+c_{5} \cdot d R^{2} \cdot d Q^{2}+c_{6} \cdot d Q^{2}+c_{7} \cdot d R \cdot d Q^{2}+c_{8} \cdot d R \cdot d Q$
\# of transitions $=30$
Definition of $d R$: $d R=\frac{R}{R_{0}}$
Definition of $d Q: d Q=\frac{Q}{Q_{0}}$

E/RI vs dQ vs dR dependence

Using the En/RI $=c_{0} \cdot 1+c_{1} \cdot d R+c_{2} \cdot d Q+c_{3} \cdot d R^{2}+c_{4} \cdot d R^{2} \cdot d Q+c_{5} \cdot d R^{2} \cdot d Q^{2}+c_{6} \cdot d Q^{2}+c_{7} \cdot d R \cdot d Q^{2}+c_{8} \cdot d R \cdot d Q$ function, different plots are illustrated below.

- $d R=1.0, d Q=0.99$
$\mathrm{dR}=1.0, \mathrm{dQ}=0.999$
delo
- $d R=1.0, d Q=1.01$
- The energy varies much more with the dR than with the dQ change.
- The dR variation shifts all transitions at the same direction, i.e. the dR increase shifts all transitions to lower energies, even - more or less - by the same amount.

$$
\begin{array}{ll}
- & \mathrm{dR}=1.0, \mathrm{dQ}=0.99 \\
- & \mathrm{dR}=1.009, \mathrm{dQ}=0.99 \\
- & \mathrm{dR}=1.01, \mathrm{dQ}=0.99 \\
- & \mathrm{dR}=1.011, \mathrm{dQ}=0.99 \\
- & \mathrm{dR}=1.02, \mathrm{dQ}=0.99
\end{array}
$$

At this dQ regime, the transitions' mixing does not seem to be affected with the dQ-variation (compared to what was suspected in the past when the dQ change was more extreme)

- $\quad \mathrm{dR}=1.0, \mathrm{dQ}=0.99$
- $\quad d R=1.0, d Q=0.999$
- $d R=1.0, d Q=1.0$
- $\quad d R=1.0, d Q=1.001$
- $\quad d R=1.0, d Q=1.01$

E/RI vs dQ vs dR dependence

Using the En/RI $=\mathrm{c}_{0} \cdot 1+\mathrm{c}_{1} \cdot \mathrm{dR}+\mathrm{c}_{2} \cdot \mathrm{dQ}+\mathrm{c}_{3} \cdot \mathrm{dR}^{2}+\mathrm{c}_{4} \cdot \mathrm{dR}^{2} \cdot \mathrm{dQ}+\mathrm{c}_{5} \cdot \mathrm{dR}^{2} \cdot \mathrm{dQ}^{2}+\mathrm{c}_{6} \cdot \mathrm{dQ}^{2}+\mathrm{c}_{7} \cdot \mathrm{dR} \cdot \mathrm{dQ}^{2}+\mathrm{c}_{8} \cdot \mathrm{dR} \cdot \mathrm{dQ}$ function, different plots are illustrated below.

E_{0} is the most intense transition of the multiplet (transition-1)

As expected from previous observations the $d R$ variation has a bigger effect on the relative shift of the transitions than the dQ variation.

E/RI vs dQ vs dR dependence

Using the $E n / R I=c_{0} \cdot 1+c_{1} \cdot d R+c_{2} \cdot d Q+c_{3} \cdot \mathrm{dR}^{2}+\mathrm{c}_{4} \cdot \mathrm{dR}^{2} \cdot \mathrm{dQ}+\mathrm{c}_{5} \cdot \mathrm{dR}^{2} \cdot \mathrm{dQ}^{2}+\mathrm{c}_{6} \cdot \mathrm{dQ}^{2}+\mathrm{c}_{7} \cdot \mathrm{dR} \cdot \mathrm{dQ}^{2}+\mathrm{c}_{8} \cdot \mathrm{dR} \cdot \mathrm{dQ}$ function, different plots are illustrated below.

- The energy change for all transitions belonging in the same multiplet (loweror higher-energy one) is almost the same

E/RI vs dQ vs dR dependence

Using the $E n / R I=c_{0} \cdot 1+c_{1} \cdot d R+c_{2} \cdot d Q+c_{3} \cdot \mathrm{dR}^{2}+\mathrm{c}_{4} \cdot \mathrm{dR}^{2} \cdot \mathrm{dQ}+\mathrm{c}_{5} \cdot \mathrm{dR}^{2} \cdot \mathrm{dQ}^{2}+\mathrm{c}_{6} \cdot \mathrm{dQ}^{2}+\mathrm{c}_{7} \cdot \mathrm{dR} \cdot \mathrm{dQ}^{2}+\mathrm{c}_{8} \cdot \mathrm{dR} \cdot \mathrm{dQ}$ function, different plots are illustrated below.

$d R=1.0$	
	$d R=1.009$
	$d R=1.01$
	$d R=1.011$
	$d R=1.02$

- The dQ variation shifts the transitions belonging in a different multiplet (lower- vs higher-energy) to a different energy direction, i.e. for the lower-energy multiplet's transitions, the energy decreases with the dQ increase while the for the higherenergy multiplet's transitions the energy increases with the dQ increase. However, the relative energy shift for a dQ value for transitions belonging in the same multiplet is very small, e.g. the energy shift of transitions 7 and 9 relative to transitions 3 and 4 is $\sim 0.5 \mathrm{keV}$. This means that the dQ effect cannot correct for the bad reduced chisquare of the $2 \mathrm{p}-1 \mathrm{~s}$ fit in that region which is bigger than 0.5 keV (sth like $\sim 5 \mathrm{keV}$?).

E/RI vs dQ vs dR dependence

Using the En/RI $=\mathrm{c}_{0} \cdot 1+\mathrm{c}_{1} \cdot \mathrm{dR}+\mathrm{c}_{2} \cdot \mathrm{dQ}+\mathrm{c}_{3} \cdot \mathrm{dR}^{2}+\mathrm{c}_{4} \cdot \mathrm{dR}^{2} \cdot \mathrm{dQ}+\mathrm{c}_{5} \cdot \mathrm{dR}^{2} \cdot \mathrm{dQ}^{2}+\mathrm{c}_{6} \cdot \mathrm{dQ}^{2}+\mathrm{c}_{7} \cdot \mathrm{dR} \cdot \mathrm{dQ}^{2}+\mathrm{c}_{8} \cdot \mathrm{dR} \cdot \mathrm{dQ}$ function, different plots are illustrated below.

E/RI vs dQ vs dR dependence

Using the $E n / R I=c_{0} \cdot 1+c_{1} \cdot d R+c_{2} \cdot d Q+c_{3} \cdot \mathrm{dR}^{2}+\mathrm{c}_{4} \cdot \mathrm{dR}^{2} \cdot \mathrm{dQ}+\mathrm{c}_{5} \cdot \mathrm{dR}^{2} \cdot \mathrm{dQ}^{2}+\mathrm{c}_{6} \cdot \mathrm{dQ}^{2}+\mathrm{c}_{7} \cdot \mathrm{dR} \cdot \mathrm{dQ}^{2}+\mathrm{c}_{8} \cdot \mathrm{dR} \cdot \mathrm{dQ}$ function, different plots are illustrated below.

