

Fermilab PIP-II Injector Test - LLRF System **Design and Performance**

P. Varghese, B. Chase, S. Raman, Syed. A, P. Hanlet, D. Nicklaus, FNAL

L. Doolittle, C. Serrano, LBNL

13 October 2022

Outline

- 1. PIP2-IT Accelerator Components
- 2. LLRF Systems
 - a) RFQ and Buncher 1
 - b) Buncher 2 and 3
 - c) HWR Cryomodule
 - d) SSR1 Cryomodule
- 3. LLRF Testing and Calibration
- 4. Labview, ACNET and EPICS interfaces
- 5. Results and system performance

PIP2-IT Accelerator Components

Ion Source RFQ, B1
VXI Crate
2 MFC cards

Buncher2,3 1 SOCMFC Chassis HWR SSR1

4 SOCMFC 4 SOCMFC

Chassis Chassis

1 Tuner 2 Resonance

Signal Cond Control Chassis

Module

PIP2-IT LLRF Systems

PIP2 4-Cavity RF Station

LLRF System Architecture

Digital Controller

RFQ and B1 LLRF System

Beam Loading Compensation – B2

HWR LLRF System with Pneumatic Tuner Control

HWR Resonance Control Design

Physical Model

Control System Model

Controller Implementation

Control System Simulation

HWR Resonance Control Performance

Measured Step Response

Cavity GDR Mode Waveforms

Cavity Tuning Range

RF Cavity Parameters and Feedback Gains

Cavity Type	Q_L	f_0	f_H	K_P	
		(MHz)	(Hz)		
Warm Cavity	3000	53	8.83×10^{3}	15	
RFQ	15000	162.5	5.542×10^{3}	23	Maximum Feedback
Buncher Cavity	10000	162.5	8.125×10^{3}	16	Gains computed
HWR Cavity	2.32×10^{6}	162.5	35	3548	for Stability with
SSR1 Cavity	3.02×10^{6}	325	53.8	2317	45 degree phase
SSR2 Cavity	5.05×10^{6}	325	32.2	3846	Margin with 1 us
LB650 Cavity	10.36×10^{6}	650	31.4	3935	Loop delay
HB650 Cavity	9.92×10^{6}	650	32.76	3801	
LCLSII Cavity	4×10^7	1300	16.25	7600	

$$\frac{C(s)}{R(s)} = \frac{K_P \omega_H(s + K_I/K_P)}{s^2 + s(K_P + 1)\omega_H + K_I \omega_H}$$

HWR Cavity Field Regulation

HWR Amplitude and Phase Regulation									
	Cavity4	Cavity5	Cavity6	Cavity7	Cavity8				
Cavity Field Setpoint (MV/m)	2.89	6.04	8.94	8.5	8				
Amplitude Regulation (rms) %	0.0135	0.0106	0.0101	0.0081	0.0103				
Phase Regulation (rms) deg	0.0228	0.0065	0.0056	0.0055	0.0062				
Feedback Proportional Gain	1000	1000	1000	1000	1000				
Feedback Integral Gain (rad/sec)	1,000,000	1,000,000	1,000,000	1,000,000	1,000,000				

PIP-II Specifications

Amplitude Regulation (individual cavity) < 0.06%

Energy Stability (Linac) < 0.01%

• Phase Regulation < 0.06 deg

SSR1 LLRF System with Piezo Tuner Control

SSR1 Piezo Tuner Control – EPICS Interface

SSR1 Cavity Detuning Histograms

SSR1 Piezo Transfer Functions

10/13/2022

SSR1 Amplitude and Phase Regulation

SSR1 Amplitude and Phase Regulation									
	Cavity1	Cavity2	Cavity3	Cavity4	Cavity5	Cavity6	Cavity7	Cavity8	
Cavity Field Setpoint (MV/m)	4.88	4.63	4.78	7.32	7.8	7.56	7.32	10	
Amplitude Regulation (rms) %	0.0194	0.0289	0.0219	0.0157	0.014	0.0158	0.0147	0.0124	
Phase Regulation (rms) deg	0.0116	0.0164	0.0118	0.0091	0.0088	0.0093	0.0092	0.0076	
Feedback Proportional Gain	1600	1600	1600	1600	1600	1600	1600	1600	
Feedback Integral Gain (rad/sec)	3,000,000	3,000,000	3,000,000	3,000,000	3,000,000	3,000,000	3,000,000	3,000,000	

PIP-II Specifications

Amplitude Regulation (individual cavity) < 0.06%

Energy Stability (Linac) < 0.01%

Phase Regulation< 0.06 deg

RF Power Calibration

- 1. Perform the calibration with the LLRF system in CW mode
- 2. Apply RF power using FF to desired forward power (Meter 1) for calibration (Start with 10 dB attenuator in the RF Drive for safety)
- 3. Allow for attenuation in cable to the cavity and for coupler 1 attenuation to get cavity forward power PF
- 4. Calculate cavity gradient from forward power and other parameters shown in equation
- 5. Adjust gradient and forward power calibration constants to match measured readings.
- Adjust reflected power calibration constant to make the reflected power waveform the same as the forward power. (With no beam, at steady state, forward power = reflected power)
- Monitor front panel reflected power (Meter 2) allowing for cable and internal coupler attenuation for checking calibration
- 8. Repeat calibration at different power levels

RF Detune Calibration

$$\ddot{\mathbf{V}}(t) + \frac{\omega_0}{Q_L}\dot{\mathbf{V}}(t) + \omega_0^2\mathbf{V}(t) = \frac{\omega_0R_L}{Q_L}\dot{\mathbf{I}}(t)$$

$$\frac{d\vec{V}}{dt} = (-\omega_{1/2} + j\Delta\omega)\vec{V} + R_L\omega_{1/2}\vec{I}$$

$$\frac{d\vec{V}}{dt} = a\vec{V} + b\vec{K}_1$$

$$a = \frac{1}{\vec{M}_V} \cdot \left[\frac{d\vec{M}_V}{dt} - \beta\vec{M}_K\right]$$

- The cavity is operated in pulse mode with a cavity field ~ 1/2 FS magnitude and the cavity probe and forward waveforms are recorded.
- Numerical analysis of the acquired data provides cavity parameters such as half bandwidth and the detuning constants

Cavity Quench Detection/ Overdrive Protection

$$P_{\rm diss} = |\vec{K}|^2 - |\vec{R}|^2 - \frac{dU}{dt}$$
 Controller Output Saluration Set, DET -1 DEED MADE to SET, NATO-10 Set, DET -1 DEED MADE to SET, DATO-10 SET, DATO-10

- The cavity is operated in pulse mode with a cavity field ~ 1/2 FS magnitude and the cavity probe and forward waveforms are recorded.
- Numerical analysis of the acquired data provides cavity parameters such as half bandwidth and the detuning constants

Q_L Measurement

HWR Cavity 5, $Q_L = 2.07e6$

SSR1 Cavity 5, $Q_L = 4.11e6$

User Interfaces

EPICS

ACNET

Summary

- The LLRF systems at PIP2-IT met the project requirements
- A Resonance Control System for the HWR cryomodule was developed and integrated into the LLRF controller
- All LLRF systems had ACNET interfaces and the SSR1 LLRF system used an EPICS interface for the resonance control system
- Automated ACL sequencers were used to turn on the various LLRF systems and transition them into GDR mode at their operating gradients
- Operation at 2 mA beam with a 550 us pulse was limited to a short period due to some issues
 with the MPS system 10 us pulses were used toward the end of the run
- Beam loading compensation was demonstrated in the warm front end. The SRF cryomodules
 were able to compensate for beam loading with their high feedback gains.
- A LBNL built LLRF controller based on the LCLS-II LLRF system was tested with the SSR1 cavities 7 and 8 and its various test features were exercised.

Thank You!

