

Low Level RF Workshop 2022

9-13 Oct 2022, Brugg-Windisch, Switzerland

FPGA implementation of a multiharmonic cavity controller for the Proton Synchrotron Booster at CERN

Diego Barrientos, John Molendijk, Michael Jaussi, Simon Albright, Maria Elena Angoletta, Alan Findlay 12 October 2022

The CERN accelerator complex Complexe des accélérateurs du CERN

VXS LLRF architecture

VXS LLRF architecture

Custom (standard) electronics

- VXS-DSP-FMC carrier
- VXS switch
- Custom FMCs: 4ch-16b-125MSPS ADCs, 4ch-16b-250MSPS DACs, MDDS...

Custom firmware, software

- Intra- and Inter-module communications
- DSP, feedback/feedforward loops
- Diagnostics, management, CERN control system integration...

VXS-DSP-FMC carrier

VXS switch

Firmware: Communications

Proton Synchrotron Booster post LS2

Hardware configuration

- 4 rings \rightarrow 3 sectors \rightarrow 12 cells
- Per sector: up to 8 kV_{pk}
- Per ring: up to 24 kV_{pk}
- One cell redundancy

LLRF cavity controller

- 1 VXS-DSP-FMC carrier per sector/ring
- ADC + DAC FMCs

Proton Synchrotron Booster post LS2

Proton Synchrotron Booster post LS2

LLRF system

- 1 VXS-DSP-FMC carrier:
 - Radial loop, frequency program
- 1 VXS-DSP-FMC carrier:
 - Phase loop, synchro loop
- 3 VXS-DSP-FMC carrier:
 - Cavity controllers (1 per sector)
- Timings, diagnostics...

Fixed frequency clock: demodulator

- No need of complex DDS schemes
- ADC/DACs at optimum frequency
- Clock, synchronization and FTW distribution over backplane

Feed-forward compensation

Embedded network analyzer

Voltage/phase setpoint for each harmonic

Sectors alignment

Induced voltage

Longitudinal blowup: Phase noise / higher harmonic

Multi-harmonic cavity controller in FPGA

home.cern