

RBS on the 90keV Au-197 sample

Michael Heines

Concept of RBS

- Low mass ions on heavier target
- Breach through electron screening
- ~2 MeV ⁴He⁺
- Measure energy → Info on present elements
- Measure relative count rates →
 Information about concentrations
- Stopping effects induce widened structures → Depth dependence

Calibration sample

- Si/SiO₂/Au-Co
- 1.57 MeV ⁴He scattered at 161.5°
- Old calibration sample → Thin layer of carbon on top
- Not accounting for carbon → GC sample had gold implanted at negative depths
- Fit layered spectrum with SIMNRA

Glassy carbon sample (ongoing)

- 90 keV sample from Surrey
- Clear presence of carbon, oxygen and gold
- Oxygen most likely between grain boundaries in the glassy carbon
- Measure "empty" sample to compare

Glassy carbon sample (ongoing)

- 90 keV sample from Surrey
- Clear presence of carbon, oxygen and gold
- Oxygen most likely between grain boundaries in the glassy carbon
- Measure "empty" sample to compare

Neutron PSD overflows

Department of Physics and Astronomy, Institute for Nuclear and Radiation Physics **KULEUVEN**

What's next?

- Sample preparation
 - Extract implanted fraction and implantation profile
 - Measure "empty" sample
 - More samples from Surrey/Dresden/Leuven
- Neutron Analysis
 - Recover more overflows \rightarrow Fit waveform to extract rise time
 - Correlation histograms?

