QUARTET

QUAntum inteRacTions for Exotic aToms

QUARTET goals :

Develop a dedicated, transportable experimental setup for x-ray spectroscopy of exotic atom cascade with microcalorimeters.

Measure nuclear charge radii and BSQED effects, constraints on new physics **Demonstrate** quantum sensing detectors and metrology for exotic atoms

The physics of exotic atoms

Exotic particle is heavier, closer to the nucleus

- Sensitive to nuclear properties
- Strong coulomb field regime

$$m_{\mu^-} = 207 m_{e^-}$$

 $r_{\mu^-} \sim \frac{1}{207} r_{e^-}$

 \rightarrow overlap with nucleus x 10⁷ !!!

One observable–lots of physics

First Auger emission →H-like system Radiative cascade follows the yrast band (highest angular momentum states)

- **High-n** circular Rydberg states –pure QED systems, vacuum polarization
- Low-n nuclear radii and strong interaction effects

The limits of existing x-ray detectors

Method	Intrinsic Resolution	Typical Efficiency	Energy Range
HPGe	10⁻³ & ~500 eV	3 x 10 ⁻²	>50 keV
Crystal spectrometers	10 ⁻⁶	10 ⁻⁷	<30 keV Narrow Band!
MCs	10 ⁻⁴	10 ⁻⁴	1-300 keV

MC's provide broadband high efficiency and resolution in the hard X-ray regime, never before available

Muonic atoms-nuclear charge radii

Nuclear charge radii in light systems (Z=3-10) currently limited by HPGe resolution

New high resolution @5-200 keV will have major impact

Absolute radii

Absolute radii to anchor chains of isotope shift measurements. Test nuclear models.

lsot.	E_{1S-2P} keV	$\delta_{exp} \mathbf{eV}$	$\delta_{NP} eV$	fm/keV	$\delta_r \ 10^{-3} \ \text{fm}$	Gain	Good for
¹¹ B	52	<mark>5</mark> → 0.10	0.2 ightarrow 0.05	-6.7	21 ightarrow 0.8	26	Mir., HLI, Chain
⁹ Be	33	$10 \rightarrow 0.07$	0.1 ightarrow 0.03	-16	$\textbf{12} \rightarrow \textbf{1.3}$	9	Mir., HLI, Chain
⁷ Li	19	60 ightarrow 0.05	$\textbf{0.03} \rightarrow \textbf{0.01}$	-47	$42 \rightarrow 2.4$	17	Mir., Chain

Lithium chain, limited by reference. Can improve by factor ~50 **No more grey band** **Be chain**, limited by reference. Can improve by factor ~9 Improve ^{10,11}**B** absolute and IS By factor ~30 ~size of blue datapoint

Critical for upcoming ⁸B measurement

Up to N now accessible with No Core Shell Model with Continuum Benchmark ab initio theory

New Physics searches

"Fifth Force" searches through radii difference comparisons

Strong-field Bound State QED

BSQED in strong field regime poorly probed, due to lack of lasers and large nuclear uncertainties

- H tested at 3rd order QED
- H-like U only at threshold of 2nd order (GSI)

Strong-field Bound State QED

Exotic atoms offer orders of magnitude higher Coulomb fields

Rydberg states-negligible nuclear uncertainties

Sensitivity to 2nd order QED for large range of Z

N. Paul et al, PRL 126 (2021)

Proof of principle : JPARC with TES

HEATES collaboration with NIST-TES

N-=5 \rightarrow 4 transition in muonic Ne

Probe strong-field vacuum polarization

T. Okumura et al, submitted

JPARC limitation : charged particle background

0.5 eV shift from charged particle background! Largest systematic uncertainty

Conclusions from JPARC

- MC spectroscopy is possible, but JPARC isn't optimal (pile-up from 50 muons/ns)
- 2. PSI: tagged rate 50 muons/ms (million times less pileup)
- 3. Calibration at low energies works well with x-ray tubes. Needs to be online!
- 4. Can stop muons in ~Bar of neon. Showed no electrons left (no screening).
- 5. Absorption in windows/gas not limiting above ~keV

And then.. BSQED with antiprotons

Extra Low Energy Antiprotons (ELENA) now at CERN

Strongest field BSQED tests, highest sensitivity, same experimental method as for charge radii

QUARTET @ GBAR

Proof of principle tests for x-ray spectroscopy at GBAR will begin in fall 2022 Test chamber + Ge detector, solid targets, study background for MC detector

Metrology of MCs?

 $\Delta E/E = 10^{-6}$

~meV for 3 keV x ray

Paris Double Crystal Spectrometer (DCS) = reference-free spectroscopy, crystal lattice spacing directly connected to the definition of the meter.

Absolute line shapes from DCS, calibrate response function of MMC (<30 keV)
Improve accuracy of MMCs?
J W Fowler et al 2021 Metrologia 58 015016 (2021)

Low Z <r2> and ab-initio/EFT/NN calculations

