Welcome to PSI

This workshop is funded by the SNSF through the Ambizione Grant of FH.

Our sincere thanks go out to ...

Anita Govaerts Van Loon (conference secretary)

Bernhard Lauss

Stefan Ritt

Vladyslava Sharkovska (IT & Zoom support)

Science Foundation

Combining μ H, H, He, HD⁺, Penning trap measurements

F. Hagelstein & A. Antognini

Best test of H-energy levels

Best test of higher-order terms $\propto Z^{5...7}$

Best test of a three-body molecule

Best test of bound *g*-factors

Hyperfine splitting

Theory: QED, ChPT, data-driven dispersion relations, ab-initio few-nucleon theories

Experiment: HFS in μ H, μ He⁺, ...

Guiding the exp.

find narrow 1S HFS transitions with the help of full theory predictions: QED, weak, finite size, polarizability

Interpreting the exp. extract E^{TPE} , $E^{\text{pol.}}$ or R_{z}

Input for datadriven evaluations form factors, structure functions, polarizabilities

Testing the theory

- discriminate between theory predictions for polarizability effect
 - disentangle R_Z & polarizability effect by combining HFS in H & μ H
- ► test HFS theory
 - combining HFS in H & μ H with theory prediction for polarizability effect
- test nuclear theories

Spectroscopy of ordinary atoms (H, He⁺)

Electron and Compton Scattering

F. Hagelstein & A. Antognini

Interplay with theory & other experiments

Theory: QED, ChPT, data-driven dispersion relations, ab-initio few-nucleon theories, LQCD

F. Hagelstein & A. Antognini

F. Hagelstein & A. Antognini

F. Hagelstein & A. Antognini

F. Hagelstein & A. Antognini

HFS **Theory:** QED, ChPT, data-driven Theory dispersion relations, ab-initio few-nucleon theories, LQCD **Testing the theory** Interpreting the exp. ► bound-state QED for H, He⁺ extract E^{TPE} , $E^{\text{pol.}}$, ► HFS theory Guiding the exp. nuclear theories R_7 or R_F three-body molecules find HFS or LS Bound g-factors transitions TPE with the help of full

Input for data-

driven evaluations

form factors,

structure functions,

polarizabilities

Electron and

Compton Scattering

Spectroscopy of ordinary atoms (H, He⁺)

> Hydrogen molecular ions

> > Penning traps

F. Hagelstein & A. Antognini

theory predictions:

QED, weak, finite size,

polarizability

Polarizabilities

Scattering

experiments

Experiment: HFS in μ H, μ He⁺, ... LS in μ H, μ D, μ He⁺, ...

HFS **Theory:** QED, ChPT, data-driven Theory dispersion relations, ab-initio few-nucleon theories, LQCD **Testing the theory** Interpreting the exp. ► bound-state QED for H, He⁺ extract E^{TPE} , $E^{\text{pol.}}$, ► HFS theory Guiding the exp. nuclear theories R_7 or R_F three-body molecules find HFS or LS Bound g-factors transitions TPE with the help of full

Input for data-

driven evaluations

form factors,

structure functions,

polarizabilities

Electron and

Compton Scattering

Spectroscopy of ordinary atoms (H, He⁺)

> Hydrogen molecular ions

> > Penning traps

F. Hagelstein & A. Antognini

theory predictions:

QED, weak, finite size,

polarizability

Polarizabilities

Scattering

experiments

HFS experiments

Heavier (Muonic) Atoms

Experiment: HFS in μ H, μ He⁺, ... LS in μ H, μ D, μ He⁺, ...

HFS **Theory:** QED, ChPT, data-driven Theory dispersion relations, ab-initio few-nucleon theories, LQCD **Testing the theory** Interpreting the exp. ► bound-state QED for H, He⁺ extract E^{TPE} , $E^{\text{pol.}}$, ► HFS theory Guiding the exp. nuclear theories R_7 or R_F three-body molecules find HFS or LS transitions Bound g-factors TPE with the help of full theory predictions: Spectroscopy of **Input for data-**QED, weak, finite size, ordinary atoms (H, He⁺) driven evaluations polarizability form factors, structure functions, Polarizabilities

polarizabilities

Scattering experiments

F. Hagelstein & A. Antognini

Electron and Compton Scattering

Hydrogen molecular ions

Penning

traps

HFS experiments

Heavier (Muonic) Atoms

Experiment: HFS in μ H, μ He⁺, ... LS in μ H, μ D, μ He⁺, ...

HFS experiments

Heavier (Muonic) Atoms

Why are we here?

from puzzle to PRECISION

- Several experimental activities ongoing and proposed:
 - 1S hyperfine splitting in μ H and μ He⁺ (CREMA, FAMU, J-PARC)
 - Improved measurement of Lamb shift in μ H, μ D and μHe^+ possible ($\times 5$)
 - Medium- and High-Z muonic atoms
- Theory support is needed

MUONIC ATOM THEORY INITIATIVE

6

No useless plenary discussions but

Coffee, Lunch, Dinner, Bowling, BBQ

© Randy Glasbergen glasbergen.com

"Goofing off is harder than it looks. After the fourth cup of coffee, it's very difficult not to accomplish something!"

F. Hagelstein & A. Antognini

"I'm sick and tired of you taking credit for my work!"