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Abstract

Recently, experiments at the ATOMKI laboratory, located in Debrecen, Hungary,
point to the possible existence of a low-energy addition to the Standard Model.
They have generated widespread attention. While the experimental findings lack
an independent confirmation, they give incentive, from a more general point of
view, to investigate the possible detection of new particles with a rest mass of 15
to 20 MeV, in atomic physics high-precision experiments. We find that, in this
mass range, the effects will be most pronounced in the spectra of muonic (not
electronic) bound systems, and, most notably, in the hyperfine structure. While it
is a challenge to separate the effects from nuclear-structure corrections to the
hyperfine splitting, this endeavor is definitely not hopeless. In general, in our
work [Phys.Rev.A 101 (2020) 062503], we derive the effective potentials
corresponding to the exchange of a pseudoscalar particle, and a new vector
particle, in two-body bound systems. Comparison with the literature reveals that
the corresponding effective potentials may not have been treated consistently in the
past. In our analysis of conceivable effects to be seen in true muonium (bound
system of oppositely charged muons), we compare the magnitude of the new effects
to the uncertainty due to hadronic vacuum polarization. An interesting theoretical
question, of some general importance, concerns the use of the Coulomb gauge for
the massive vector propagator and its suitability for bound-state calculations.

The project has been supported by the NSF (grants PHY-1710856 and

PHY-2011762).
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Outline

First, Some “Commercial” on a Recent Book

Then, Some Words on X17 and Muonic Systems

Finally, Some Dedicated Statements on Hadronic VP
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Upcoming Book

For more than 60 years, the book of Bethe and Salpeter has been a cornerstone
in the description of few-body atomic systems. An update may be indicated.
Starting from the basic nonrelativistic and relativistic formulas for the hydrogen
bound and continuum states, we proceed to discuss Green functions (including
Schwinger’s momentum representation of the Schrödinger-Coulomb Green
function and its derivation) in detail. The calculation of Bethe logarithms is
discussed. interaction potentials are derived by matching scattering amplitudes
and effective Hamiltonians. Higher-order effects are an integral part of the
treatment, and so is the calculation of the helium spectrum, including relativistic
and radiative corrections. Relativistic recoil corrections are discussed in detail,
using various methods, i.e., the Bethe-Salpeter equation and nonrelativistic
quantum electrodynamics (NRQED). Further topics include the renormalization
group, field-theory methods, and vacuum-mediated corrections to photon
propagators. The book serves both as a textbook as well as a monograph and has
meanwhile appeared in print (July 2022).
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Title Page

World Scientific
World Scientific
www.worldscientific.com
12722 hc

ISBN 978-981-125-225-9

Quantum
Electrodynamics

Quantum
Electrodynamics

Quantum
 Electrodynam

ics:
Atom

s, Lasers and Gravity

This book introduces readers to a variety of topics 
surrounding quantum field theory, notably its role in 
bound states, laser physics, and the gravitational 
coupling of Dirac particles. It discusses some rather 
sophisticated concepts based on detailed derivations 
which cannot be found elsewhere in the literature.

It is suitable for undergraduates, graduates, and 
researchers working on general relativity, relativistic 
atomic physics, quantum electrodynamics, as well as 
theoretical laser physics.

Ulrich D Jentschura 
Gregory S Adkins

Jentschura 
Adkins

Atoms, Lasers and Gravity
Atoms, Lasers and Gravity
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Table of Contents (770 Pages, 19 Chapters, Some Examples Next)
1. Introduction

2. From Unit Systems for the Microworld to Field Quantization

3. Time–Ordered Perturbations

4. Bound–Electron Self–Energy and Bethe Logarithm

5. Interatomic and Atom–Surface Interactions

6. Racah–Wigner Algebra

7. Free Dirac Equation

8. Dirac Equation for Bound States, Lasers and Gravity

9. Electromagnetic Field and Photon Propagators

10. Tree–Level and Loop Diagrams, and Renormalization

11. Foldy–Wouthuysen Transformation and Lamb Shift

12. Relativistic Interactions for Many–Particle and Compound Systems

13. Fully Correlated Basis Sets and Helium

14. Relativistic Many–Particle Calculations

15. Beyond Breit Hamiltonian and On–Shell Form Factors

16. Bethe–Salpeter Equation

17. NRQED: An Effective Field Theory for Atomic Physics

18. Fermionic Determinants and Effective Lagrangians

19. Renormalization–Group Equations
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Chapter 11: New Results

General Results for the Eighth–Order Foldy–Wouthuysen Transformation
(Surprise!)
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Chapter 15: Calculation of Binding Corrections to the Lamb Shift

I Diagrams:

I The original result was due to Bethe, Baranger and Feynman,

∆E =
α

π

(Zα)5m

n3
A50(nLj) , A50(nLj) = 4π δL0

(
139

128
− 1

2
ln(2)

)
.

I Modern Approach: Dispersion Relation! Idea: Let the incoming
Coulomb momentum, which is initially space-like, q2 = −~q 2 ≤ 0,
continue into the time-like domain, q2 → Q2 > 4m2, where the
expression for the energy correction develops a branch cut in the
complex plane. Then, write a dispersion relation which connects the
cut to real energy shift. This simplifies the calculation dramatically.
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Chapters 15, 16, 17:
Three Ways to the Relativistic Recoil Correction (Salpeter)

The derivation of the so-called “Relativistic Recoil Correction” (correction
to bound-state energy levels beyond the Breit Hamiltonian) is presented,
for a general atomic reference state and for arbitrary mass ratios, in three
different ways:

I Way I (Chapter 15): Ad hoc approach, matching scattering amplitudes

I Way II (Chapter 16): Ab initio, relativistic Bethe–Salpeter equation

G = S + S K G

I Way III (Chapter 17): From an Effective Field Theory (NRQED)
(There is a Bethe–Salpeter Equation of NRQED!)
(It corresponds to the Schrödinger equation!)
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Summary of Book Project

I World Scientific will be the publisher

I Textbook on advanced quantum mechanics;
textbook on quantum field theory
with an emphasis on renormalization,
and the renormalization group;
monograph on the gravitational coupling of
relativistic quantum mechanical spin-1/2 particles;
monograph on the laser-dressed relativistic electron propagator;
monograph on higher-order binding corrections to
QED effects in atoms;
monograph on the Bethe–Salpeter equation
and Nonrelativistic QED (NRQED)
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Hungarian Experimental Results (ATOMKI Laboratory, Debrecen)
Excess of electron-positron pairs in the bombardement of 7Li by protons in a
distinct angular region, consistent with competing reactions (standard theory with
a virtual photon)

7Li + p→ 8Be∗ → 8Be + γ → 8Be + e+e− (1+ → 0+)

and transition via an intermediate X(17MeV) bosonic virtual particle, termed the
X17 boson,

7Li + p→ 8Be∗ → 8Be +X(17MeV) → 8Be + e+e− (1+ → 0+)

Experimental results remain to be confirmed by other groups. (New 2019 paper
by the Hungarian group on helium nuclei seems to confirm their observations.
Reaction: 3H + p→ 4He∗ → 4He +X(17MeV) → 4He + e+e−.) X17 has small
coupling strengths to protons (in particular) and neutrons.
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Motivation (Group of Attila Krasznahorkay, ATOMKI)

Beryllium (2016):

7Li + p→ 8Be∗ → 8Be + γ → 8Be + e+e− (1+ → 0+)

Helium (2019):

3H + p→ 4He∗ → 4He + γ → 4He + e+e− (0− → 0+)

From arXiv:1910.10459:
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Caricature

Mass of new particle: about 17 MeV.
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Possible Theoretical Explanations

Group of Jonathan Feng (PRL, 2016):
“The X17 might be a protophobic vector boson.”

Paper of Ellwanger and Moretti (JHEP, 2016):
“The X17 might be a light pseudoscalar boson.”

Let us remember that in atomic physics precision experiments, we would
actually like to see deviations of experimental observations from
experiments attributable to “new physics”. This has been a significant
motivation pushing the theoretical and experimental efforts for the last
couple of decades.

Recent attempts at alternative explanations for the Hungarian
observations, but noone has carried out any experiment. Room for
improvement: Angular resolution, in Hungary!
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Light Vector and Pseudoscalar Particles and Atomic Physics

We investigate, irrespective of the Hungarian experimental results,
what the effect of a light (mass in the approximate range from 10 MeV to
100 MeV) vector or pseudoscalar new particle is for atomic-physics
experiments.

Here, f denotes the bound fermion (typically, an electron or a muon) and
N denotes the atomic nucleus. (Inspired by the mentioned theoretical
papers of Feng et al., and of Ellwanger and Moretti.)
Unfortunately, the mass range of 17 MeV (give or take) is quite problematic
for atomic-physics studies, because the Yukawa potentials are almost
indistiguishable from a nuclear-size effect for electronic bound states. Way
out: study muonic systems.
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X17 Lagrangian

Vector or pseudoscalar?
Vector hypothesis (Jonathan Feng’s group, PRL, 2016):

LX,V = −
∑
f

h
′
f ψ̄f γ

µ ψfXµ −
∑
N

h
′
N ψ̄N γ

µ ψNXµ ,

Parameterization:
h
′
f = εf e , h

′
N = εN e ,

εp = 2εu + εd , εn = εu + 2εd .

Available parameter space (electron, neutron, proton):

2× 10−4 < εe < 1.4× 10−3 ,

|εn| = |εu + 2εd| ≈
∣∣∣∣32 εd

∣∣∣∣ ≈ 1

100
,

|εp| = |2εu + εd| . 8× 10−4 .

Second equation (“conjecture”): we need this coupling in order
to explain the ATOMKI experimental results!
Latter bound: we assume a “protophobic” interaction!

16



X17 Lagrangian

Pseudoscalar hypothesis (Ellwanger and Moretti, JHEP, 2016):

LX,A = −
∑
f

hf ψ̄f i γ5 ψf A−
∑
N

hN ψ̄N i γ5 ψN A .

Parameterization:

hf = ξf
mf

v
, hN = ξN

mN

v
.

Ellwanger and Moretti obtain:

hp =
mp

v
(−0.40 ξu − 1.71 ξd) ≈ −2.4× 10−3 ,

hn =
mn

v
(−0.40 ξu + 0.85 ξd) ≈ 5.1× 10−4 .

Available parameter space (electron):

4 < ξe < 500 ,

8.13× 10−6 < he < 10−3 .
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Effective Hamiltonian for Vector Boson Exchange

Vector exchange leads to the following contribution to HFS:

HHFS,V =
h′f h

′
N

16πmf mN

[
−8π

3
δ(3)(~r)~σf · ~σN

−
m2
X

(
~σf · ~r ~σN · ~r − r2 ~σf · ~σN

)
r3

e−mX r

− (1 +mX r)
3~σf · ~r ~σN · ~r − r2 ~σf · ~σN

r5
e−mX r

−
(

2 +
mf

mN

)
(1 +mX r)

~σN · ~L
r3

e−mX r

]
.

Derivation:
[Phys. Rev. A 101, 062503 (2020)]
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Effective Hamiltonian for Pseudoscalar Boson Exchange

Pseudoscalar exchange exclusively contributes to the HFS:

HHFS,A =
hf hN

16πmf mN

[
4π

3
δ(3)(~r)~σf · ~σN

− m2
X ~σf · ~r ~σN · ~r

r3
e−mX r

+ (1 +mX r)
3~σf · ~r ~σN · ~r − ~σf · ~σN r2

r5
e−mX r

]
.

Leaves Lamb shift invariant!
[Phys. Rev. A 101, 062503 (2020)]
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Bound on the Muon Coupling Parameter

Vector model:
h
′
µ = (h′µ)opt = 5.6× 10−4 .

Pseudoscalar model:

hµ = (hµ)max = 3.8× 10−4 .
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Enhancement of X17 Effects in Muonic Systems

Example: Relative correction to the S state splitting is

EX,V (nS1/2)

EF (nS1/2)
≈ −

2h′fh
′
N

gNπ

Z mr

mX
,

EX,A(nS1/2)

EF (nS1/2)
≈ hfhN

gNπ

Z mr

mX
.

Have the reduced mass mr in the numerator after dividing by the
leading-order Fermi splitting.
(Electronic systems: relative corrections to HFS of order 10−9.)
(So: Concentrate on muonic systems)
Just to clarify:
The nuclear g factor gN is used in a specific normalization
[Phys. Rev. A 101, 062503 (2020)].
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Predictions for Muonic Deuterium

S states (with realistic estimates for coupling parameters):

E
(µd)
X,V (nS1/2)

EF (nS1/2)
≈̇ 3.8× 10−6 ,

E
(µd)
X,A (nS1/2)

EF (nS1/2)
≈̇ − 1.0× 10−6 .

P states:

E
(µd)
X,V (nP1/2)

EF (nP1/2)
≈̇ 2.5× 10−7

(
1− 1

n2

)
,

E
(µd)
X,A (nP1/2)

EF (nP1/2)
≈̇ 6.6× 10−8

(
1− 1

n2

)
.

This could be measurable but an enhanced understanding of nuclear
polarization effects might be required for S states.
For P states, nuclear effects are strongly suppressed.
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Predictions for True Muonium (µ+µ−)

Define

χV (nS) =
4

7

EX,V (nS)

EF (nS)
+

3

7

EANN,V (nS)

EANN,γ(nS)
,

χA(nS) =
4

7

EX,A(nS)

EF (nS)
+

3

7

EANN,A(nS)

EANN,γ(nS)
.

Obtain the estimates

χV (nS) ≈̇ 1.3× 10−6 ,

χA(nS) ≈̇ 2.1× 10−6 .

This could very well be measurable; only a very moderate improvement of
the accuracy of the predictions for hadronic vacuum polarization is required.
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Summary on the X17 and Atomic Physics

I X17 effects have to be confirmed in other nuclear transitions.

I Somewhat unfortunate energy range for atomic physics.

I Drastic enhancement of X17 effects in muonic systems.

I Look at the hyperfine splitting.

I Pseudoscalar hypothesis leads to “wrong sign” in regard to a muon
g − 2 “remedy”.

I Estimates for X17-mediated effects for a number of atomic systems:
[Phys. Rev. A 101, 062503 (2020)].

I Most promising candidates: Muonic deuterium and true muonium.
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Hadronic Vacuum Polarization

Justified to dedicate additional attention to hadronic vacuum polarization
because it limits the accuracy to which we can test QED effects.
Inaccuracies in hadonic VP calculations could shadow new physics effects in
low-energy precision tests of the Standard Model.

Example Feynman diagram: Contribution of hadronic VP to the anomalous
magnetic moment of an electron (muon)
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Hadronic Vacuum Polarization
Contribution of hadronic VP to a (mainly) QED observable Xi:

∆X(hVP) = C

∞∫
s=sth

ds ρ(s)KX(s,m) (5)

One integrates from pion pair production threshold sth = 4m2
π up to

infinity. Ki is a specific kernel, Ci is a coefficient, and K is a kernel, while
m is a mass scale external to the kernel.
Drell ratio R = R(s) enters the density

ρ(s) =
R(s)

3 s
, R(s) =

σ(e+ e− → h)

σ(e+e− → µ+µ−)
(6)

Example of the kernel K for X = κ [anomalous magnetic moment of an
electron (muon)] with g = 2(1 + κ):

Kκ(s) = −
(

1− 4m2

s

)−1/2 (
s2

2m4
− 2s

m2
+ 1

)
ln

1 +
√

1− 4m2

s

1−
√

1− 4m2

s


+

(
s2

2m4
− 2s

m2

)
ln
( s

m2

)
− s

m2
+

1

2
. (7)

Here, m = me or m = mµ.
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Fitting the Drell Ratio

From H. Lamm, Hadronic vacuum polarization in true muonium,
Phys. Rev. A 95, 012505 (2017):
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Example: Paper on the Muon Anomalous Magnetic Moment

Accuracy of hVP contribution: 3 permille
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Example: Paper on the Hadronic VP in True Muonium

Accuracy of hVP contribution: 2 permille
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Recent Measurements at VEPP–4M

Phys. Lett. B 788, 42 (2019) and
Phys. Lett. B 770, 174 (2017) by the same authors
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Hadronic VP: The Crux

We need the Drell ratio in a kinematic region
where QCD is highly nonperturbative.

For the perturbative regime, see R. V. Harlander and M. Steinhauser,
Comput. Phys. Commun. 153, 244 (2003).

One notes the inverse power of s in the expression ρ(s) = R(s)/(3s),
which stresses the importance of the nonperturbative region.

It may be difficult to get better than the permille range
for the accuracy of ∆X(hVP) in typical cases.
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Conclusions

I Book: QED and low-energy field theory revisited, in many ways.

I X17: A candidate for new physics, nothing more and nothing less.

I X17: We learned something about pseudoscalar particles and atomic
physics.

I hVP: Interesting effect, very interesting.

I hVP: May be difficult to get better than the permille range for hVP.
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