

Muonic vs. electronic dark forces

Clara Peset

MUONIC ATOMS AT PSI2022, Switzerland

14 October, 2022

Work in collaboration with C. Frugiuele

• The Standard Model is great bu it cannot be the end of the story:

• The Standard Model is great bu it cannot be the end of the story:

 Solutions to BSM puzzles generically predict dark sectors weakly interacting with the SM

• The landscape for DM models

→ DM production mechanism is a powerful guidance to select well motivated DM candidates

Thermal DM mass range: $\mathbf{m}_{\phi} \sim$ 1 keV-100 TeV

• Good thermal DM candidates, e.g. dark photon

• Focus on the sub-GeV window:

Direct detection experiments lose sensitivity and LHC has a limited reach.

→ New experimental strategy required!

Dark sectors and the precision frontier

• Direct probes:

- lead to discovery
- strong dependence on particular DM candidate characteristics
- e.g. neutrino facilities (MiniBooNE)

Indirect probes:

- wide searches, less model dependence
- Intensity frontier: produced at fixed target experiments or low energy colliders

Precision frontier: searching for new dark forces via atomic spectroscopy

Precision spectroscopy: hydrogen

• Theory:

▶ simple atomic systems: QED corrections up to $\mathcal{O}(\alpha^8 \ln \alpha)$

 \Rightarrow Contribution from dark sectors is also small.

Precision spectroscopy: muonic atoms

Experiment:

very accurate

- μ H: Lamb shift, 2s HFS, 1s HFS??
- ▶ µD: Lamb shift
- μ^4 He: Lamb shift

• Theory:

Iimited mainly by nuclear structure effects

 \Rightarrow Contribution from dark sectors is large.

Strategy

Set a 2-sigma bound to incorporate the new physics

$$|\Delta E^{\rm NP}_{a \rightarrow b}| \leq |\Delta E^{\rm exp}_{a \rightarrow b} - \Delta E^{\rm the}_{a \rightarrow b}| \lesssim 2\sigma_{\rm Max}$$

Needs:

- 1. High precision experiments: $\Delta E_{a \rightarrow b}^{exp}$
- 2. Very precise Standard Model computations: $\Delta E_{a \rightarrow b}^{\text{the}}$
- 3. Incorporating the energy levels of the new particle: $\Delta E_{a \rightarrow b}^{NP}$

→ Effective field theories

Why are EFTs the way to go?

- model independent
- efficient
- systematic (power counting)

EFTs for bound states

Non-relativistic systems fulfill the relation: $m_r \gg |\mathbf{p}| \gg E$

When bounded by QED, $\alpha \sim v$ is the only expansion parameter

Scales in bound state	Coulomb interactior		
Hard scale: m_r	\longrightarrow	m_r	
Soft scale: p	\longrightarrow	$m_r \alpha$	
Ultrasoft scale: E	\longrightarrow	$m_r \alpha^2$	

when hadrons are involved other scales appear: $\Lambda_{QCD}, m_{\pi}, \dots$

Scales are well separated QED/ HBChPT $\stackrel{(m_r,m_\pi)}{\Longrightarrow}$ NRQED $\stackrel{(m_r\alpha)}{\Longrightarrow}$ pNRQED.

• is a theory for ultrasoft photons

Schrödinger-like formulation

$$\left(i\partial_0 - \frac{\mathbf{p}^2}{2m_r} - V^{(0)}(r)\right)\phi(\mathbf{r}) = 0$$

+corrections to the potential +interaction with other low-energy degrees of freedom

• is a theory for ultrasoft photons

Schrödinger-like formulation

$$\left(i\partial_0 - \frac{\mathbf{p}^2}{2m_r} - V^{(0)}(r)\right)\phi(\mathbf{r}) = 0$$

+corrections to the potential +interaction with other low-energy degrees of freedom

• is a theory for ultrasoft photons

Schrödinger-like formulation

$$\left(i\partial_0 - \frac{\mathbf{p}^2}{2m_r} - V^{(0)}(r)\right)\phi(\mathbf{r}) = 0$$

+corrections to the potential +interaction with other low-energy degrees of freedom

Compute potential insertions in a quantum-mechanical fashion

is a theory for ultrasoft photons

Schrödinger-like formulation

$$\left(i\partial_0 - \frac{\mathbf{p}^2}{2m_r} - V^{(0)}(r)\right)\phi(\mathbf{r}) = 0$$

+corrections to the potential +interaction with other low-energy degrees of freedom

Energy levels:
$$E_{\mu p} = E_n^C (1 + c_1 \frac{\alpha}{\pi} + \dots + c_4 \left(\frac{\alpha}{\pi}\right)^4 + \dots),$$

 $c_1 \sim c_1 \left[\frac{m_{\mu}\alpha}{m_e}\right]$ pure QED
 $c_n \sim \sum_{j=0}^{\infty} c_n^{(j)} \left(\frac{m_{\pi}}{m_p}\right)^j; c_n^{(j)} \sim c_n^{(j)} \left[\frac{m_r}{m_{\mu}}, \frac{m_{\mu}}{m_{\pi}}, \dots\right]$

is a theory for ultrasoft photons

Schrödinger-like formulation

$$\left(i\partial_0 - \frac{\mathbf{p}^2}{2m_r} - V^{(0)}(r)\right)\phi(\mathbf{r}) = 0$$

+corrections to the potential +interaction with other low-energy degrees of freedom

Energy levels:
$$E_{\mu p} = E_n^C (1 + c_1 \frac{\alpha}{\pi} + c_2 \left(\frac{\alpha}{\pi}\right)^2 + \dots)$$
,
 $c_1 \sim c_1 \left[\frac{m_\mu \alpha}{m_e}\right]$ pure QED
 $c_n \sim \sum_{j=0}^{\infty} c_n^{(j)} \left(\frac{m_\pi}{m_p}\right)^j$; $c_n^{(j)} \sim c_n^{(j)} \left[\frac{m_r}{m_\mu}, \frac{m_\mu}{m_\pi}, \dots\right]$

EFT for dark forces

Heavy pseudoscalar exchange

contribution to energy levels is divergent and $\mathcal{O}(\alpha^5)$

$$V \propto \alpha d_{\nu}(m_1, m_2, m_{\phi}) \delta^{(3)}(\mathbf{r})$$

contribution to the energy levels is finite and $\mathcal{O}(\alpha^4)$

The leading order contribution comes from **1loop** exchange!

EFT for dark forces

New spin-1 or spin-0 boson with generic couplings to fermions

$$\mathcal{L}_V = g_V \bar{\psi} \not\!\!\!/ \psi, \quad \mathcal{L}_A = g_A \bar{\psi} \not\!\!/ A \gamma^5 \psi, \quad \mathcal{L}_S = g_S \bar{\psi} S \psi, \quad \mathcal{L}_P = g_P \bar{\psi} P \gamma^5 \psi.$$

• Scale hierarchy:

- New parameters: g_{NP} and m_{ϕ}
- Reasonable assumption: $g_{NP}^2 \ll 4\pi\alpha$

Compute the **leading** contribution to $\mathcal{O}(g_{NP}^2)$

Atomic bounds on dark sectors

Set a 2-sigma bound for allowing the new contribution

$$|\Delta E_{a \to b}^{\mathsf{NP}}| \le |\Delta E_{a \to b}^{\mathsf{exp}} - \Delta E_{a \to b}^{\mathsf{the}}| \lesssim 2\sigma_{\mathrm{Max}}$$

- Fully leptonic systems: muonium and positronium
 - very small hadronic effects
 - less stable: experimentally demanding
- Semileptonic systems: hydrogen and muonic atoms
 - hadronic effects are larger but can be fitted
 - high experimental precision

Bounds: muonic forces

System	Lamb shift		2s Hyperfine	
μ H μ D μ^4 He	Exp. (meV) 202.3706(23) 202.8785(34) 1378.521(48)	Theo. (meV) 202.397(33) 202.869(22) 1377.54(1.46)	Exp. (meV) 22.8089(51)	Theo. (meV) 22.812(3)

Table from CP, C. Frugiuele (2107.13512)

Bounds: muonic vs electronic forces

Bounds: muonic vs electronic forces

Bounds: leptonic spin-independent

Theory predictions limited by the muon mass uncertainty (Mu-MASS)

[1] V. Meyer, S. N. Bagayev, P. E. G. Baird, et al., Phys. Rev. Lett. 84, 1136 (2000).

[2] C. Frugiuele, CP, Phys.Rev.D 100 (2019) 1, 015010 [3] K. A. Woodleet al., Phys. Rev.A41, 93 (1990).

Bounds: leptonic spin-dependent

Theory predictions limited by the muon mass uncertainty (Mu-MASS)

[1] V. Meyer, S. N. Bagayev, P. E. G. Baird, et al., Phys. Rev. Lett. 84, 1136 (2000).

[2] C. Frugiuele, CP, Phys.Rev.D 100 (2019) 1, 015010 [3] K. A. Woodleet al., Phys. Rev.A41, 93 (1990).

Conclusions and outlook

- Precision physics is an trustworthy and competitive probe for dark sectors
- EFTs are the right tool to describe energy transitions
 - Model independent
 - Systematic
- Muonic atoms:
 - Best atomic probe in the MeV-GeV for spin-independent interactions
 - Prospective improvement with IS radii
- Muonium:
 - Best laboratory bounds for spin-independent interactions
 - Prospective improvement also for spin-dependent
- Atomic probes are an independent and robust test of new physics
- Prospective improvement in near future experiments

Thank you!

Prospects for experimental improvement?
 μH HFS, Lamb shift of muonic atoms, muonium
 Prospects for theoretical improvement?
 muonium HFS, Lamb shift and of muonic atoms