Two-Photon Exchange in μH and μD: Baryon χEFT and pionless EFT

Vadim Lensky

In collaboration with A. Hiller Blin, F. Hagelstein, V. Pascalutsa, M. Vanderhaeghen

Muonic Atoms@PSI

Viligen, October 14-15, 2022

Emmy Noether-Programm DFG Deutsche Fractuurggemeinschaft

Two-Photon Exchange in (Muonic) Atoms

- Muonic atoms: greater sensitivity to charge radii
- But also greater sensitivity to subleading nuclear response

Lamb Shift:
$$\Delta E_{nS} = \frac{2\pi Z \alpha}{3} \frac{1}{\pi (an)^3} \left[R_E^2 - \frac{Z \alpha m_r}{2} R_F^3 \right] + \dots$$

HFS:
$$\Delta E_{nS} = \frac{8}{3} \frac{Z\alpha}{(an)^3} \frac{1+\kappa}{mM} \left[1 - 2Z\alpha m_r R_Z\right] + \dots$$

- Described in terms of (doubly virtual fwd) Compton scattering
- Elastic ($v = \pm Q^2/2M_{target}$, elastic e.m. form factors) and inelastic (~ nuclear generalised polarisabilities)

Bohr radius

 $\propto \alpha^5$

 T_{fi}

 p_l

q

 $a = (Z \alpha m_r)^{-1}$

VVCS and Structure Functions

• Forward spin-1/2 VVCS amplitude

$$\alpha_{\rm em} M^{\mu\nu}(\nu, Q^2) = -\left\{ \left(-g^{\mu\nu} + \frac{q^{\mu}q^{\nu}}{q^2} \right) T_1(\nu, Q^2) + \frac{1}{M^2} \left(p^{\mu} - \frac{p \cdot q}{q^2} q^{\mu} \right) \left(p^{\nu} - \frac{p \cdot q}{q^2} q^{\nu} \right) T_2(\nu, Q^2) + \frac{i}{M} \epsilon^{\nu\mu\alpha\beta} q_{\alpha}(p \cdot q \ s_{\beta} - s \cdot q \ p_{\beta}) S_2(\nu, Q^2) \right\}$$

Lamb Shift: $E_{nS}^{2\gamma} = -8i\pi\alpha m \left[\phi_n(0)\right]^2 \int \frac{d^4q}{(2\pi)^4} \frac{\left(Q^2 - 2\nu^2\right) T_1(\nu, Q^2) - \left(Q^2 + \nu^2\right) T_2(\nu, Q^2)}{Q^4(Q^4 - 4m^2\nu^2)}$

• Unitarity and analyticity, data-driven: dispersive relations

Structure functions $F_1(x, Q^2)$, $F_2(x, Q^2)$, $g_1(x, Q^2)$, $g_2(x, Q^2)$

$$T_{1}(\nu, Q^{2}) = T_{1}(0, Q^{2}) + \frac{32\pi M \nu^{2}}{Q^{4}} \int_{0}^{1} dx \frac{x F_{1}(x, Q^{2})}{1 - x^{2}(\nu/\nu_{el})^{2} - i0^{+}},$$

$$T_{2}(\nu, Q^{2}) = \frac{16\pi M}{Q^{2}} \int_{0}^{1} dx \frac{F_{2}(x, Q^{2})}{1 - x^{2}(\nu/\nu_{el})^{2} - i0^{+}}$$

- The subtraction function is not directly accessible in experiment
- Data on structure functions is sometimes deficient

VVCS and Structure Functions

• Forward spin-1/2 VVCS amplitude

$$\alpha_{\rm em} M^{\mu\nu}(\nu, Q^2) = -\left\{ \left(-g^{\mu\nu} + \frac{q^{\mu}q^{\nu}}{q^2} \right) T_1(\nu, Q^2) + \frac{1}{M^2} \left(p^{\mu} - \frac{p \cdot q}{q^2} q^{\mu} \right) \left(p^{\nu} - \frac{p \cdot q}{q^2} q^{\nu} \right) T_2(\nu, Q^2) + \frac{i}{M} \epsilon^{\nu\mu\alpha\beta} q_{\alpha}(p \cdot q \ s_{\beta} - s \cdot q \ p_{\beta}) S_2(\nu, Q^2) \right\}$$

Lamb Shift: $E_{nS}^{2\gamma} = -8i\pi\alpha m \left[\phi_n(0)\right]^2 \int \frac{d^4q}{(2\pi)^4} \frac{\left(Q^2 - 2\nu^2\right) T_1(\nu, Q^2) - \left(Q^2 + \nu^2\right) T_2(\nu, Q^2)}{Q^4(Q^4 - 4m^2\nu^2)}$

- Typical energies in (muonic) atoms are small: use effective field theories
 - chiral EFT (covariant, HB, ...)
 - or even pionless EFT for nuclear effects
 - expansion in powers of a small parameter
 - order-by-order uncertainty estimate
- Two cases:
 - μ H using covariant baryon χ EFT
 - µD using pionless EFT

Lamb Shift of µH in Covariant BxPT

- Delta counting: $\Delta = M_{\Delta} M \gg m_{\pi}$
- The contributions of the Delta isobar are suppressed by powers of m_π/Δ
- LO BχPT: pion-nucleon loops

$$\Delta E_{2S}^{\text{LO, pol}} = -9.6^{+1.4}_{-2.9} \ \mu \text{eV}$$

 $\Delta E_{2S}^{\Delta-\mathrm{pole}} = 0.95 \pm 0.95 \ \mathrm{\mu eV}$

- Delta exchange:
 - suppressed in ΔE_{2S}^{pol}
 - insert transition form factors (Jones-Scadron)

VL, Hagelstein, Pascalutsa, Vanderhaeghen (2017)

Pascalutsa, Phillips (2003)

Lamb Shift of µH in Covariant BxPT

Reference	$E_{2S}^{(\mathrm{subt})}$	$E_{2S}^{(\text{inel})}$	$E_{2S}^{(\mathrm{pol})}$	$E_{2S}^{(\mathrm{el})}$	$E_{2S}^{\langle 2\gamma \rangle}$
DATA-DRIVEN DISPERSIVE EVALUATION					
(75) Pachucki '99	1.9	-13.9	-12(2)	-23.2(1.0)	-35.2(2.2)
(76) Martynenko '06	2.3	-16.1	-13.8(2.9)		
(77) Carlson <i>et al.</i> '11	5.3(1.9)	-12.7(5)	-7.4(2.0)		
(78) Birse and McGovern '12 $$	4.2(1.0)	-12.7(5)	-8.5(1.1)	-24.7(1.6)	-33(2)
(79) Gorchtein et al.'13 $^{\rm a}$	-2.3(4.6)	-13.0(6)	-15.3(4.6)	-24.5(1.2)	-39.8(4.8)
(80) Hill and Paz '16					-30(13)
(81) Tomalak'18	2.3(1.3)		-10.3(1.4)	-18.6(1.6)	-29.0(2.1)
Leading-order $B\chi PT$					
(82) Alarcòn et al. '14			$-9.6^{+1.4}_{-2.9}$		
(83) Lensky $et~al.$ '17 $^{\rm b}$	$3.5^{+0.5}_{-1.9}$	-12.1(1.8)	$-8.6^{+1.3}_{-5.2}$		
LATTICE QCD					
(84) Fu et al. '22					-37.4(4.9)

Table 1 Forward 2γ -exchange contributions to the 2S-shift in μ H, in units of μ eV.

^aAdjusted values due to a different decomposition into the elastic and polarizability contributions.

^bPartially includes the $\Delta(1232)$ -isobar contribution.

Antognini, Hagelstein, Pascalutsa (2022)

- Agreement with other calculations
- Also on the size of the subtraction contribution separately

Subtraction Function: New Ideas

• The slope of the subtraction function $T_1(0, Q^2)$

$$T_1(0, Q^2) = \beta_{M1} Q^2 + \left[\frac{1}{6} \beta_{M2} - \alpha_{\rm em} \sqrt{\frac{3}{2}} P'^{(M1, M1)0}(0) + \frac{1}{(2M)^2} \beta_{M1} + \alpha_{\rm em} b_{3,0} \right] Q^4 + \mathcal{O}(Q^6)$$

VL, Hagelstein, Pascalutsa, Vanderhaeghen (2017)

- The knowledge of $b_{3,0}$ would constrain the slope, possibly reduce the uncertainty of the 2y contribution to μ H LS
- Might be possible to extract from dilepton electroproduction, $ep \rightarrow ep\ell^+\ell^-$ Pauk, Carlson, Vanderhaeghen (2020)
- A different subtraction point: $v_s = iQ$ instead of $v_s = 0$ Hagelstein, Pascalutsa (2021)
 - inelastic contribution suppressed
 - might be advantageous in a lattice QCD calculation
 - further EFT studies

HFS of μ H in Covariant B χ PT

$$E_{
m hfs}(nS) = rac{8}{3} rac{Zlpha}{(an)^3} rac{1+\kappa}{mM} \left(1 + \Delta_{
m QED} + \Delta_{
m weak} + \Delta_{
m strong}
ight)$$
 $\Delta_{
m strong} = \Delta_{
m Z} + \Delta_{
m recoil} + \Delta_{
m pol}$

$$\begin{split} \Delta_{\text{pol.}} &= \Delta_1 + \Delta_2 = \frac{Zm}{2\pi(1+\kappa)M} (\delta_1 + \delta_2), \\ \delta_1 &= 2 \int_0^\infty \frac{\mathrm{d}Q}{Q} \left\{ \frac{5 + 4v_l}{(v_l+1)^2} \Big[4I_1(Q^2)/Z^2 + F_2^2(Q^2) \Big] - \frac{32M^4}{Q^4} \int_0^{x_0} \mathrm{d}x \, x^2 g_1(x, Q^2) \right. \\ & \times \frac{1}{(v_l+v_x)(1+v_x)(1+v_l)} \left(4 + \frac{1}{1+v_x} + \frac{1}{v_l+1} \right) \Big\}, \\ \delta_2 &= 96M^2 \int_0^\infty \frac{\mathrm{d}Q}{Q^3} \int_0^{x_0} \mathrm{d}x \, g_2(x, Q^2) \left(\frac{1}{v_l+v_x} - \frac{1}{v_l+1} \right) \end{split}$$

$$I_1(Q^2) = \frac{2M^2Z^2}{Q^2} \int_0^{x_0} dx \, g_1(x, Q^2)$$
 The generalised GDH integral

$$v_l = \sqrt{1 + \frac{1}{\tau_l}}, \ v_x = \sqrt{1 + x^2\tau^{-1}}, \ \tau_l = \frac{Q^2}{4m^2}, \ \tau = \frac{Q^2}{4M^2}$$
 Kinematic functions

HFS of μH in Covariant BχPT

$$E_{
m hfs}(nS) = rac{8}{3} rac{Zlpha}{(an)^3} rac{1+\kappa}{mM} \left(1 + \Delta_{
m QED} + \Delta_{
m weak} + \Delta_{
m strong}
ight)$$

 $\Delta_{
m strong} = \Delta_{
m Z} + \Delta_{
m recoil} + \Delta_{
m pol}$

$$\begin{split} \Delta_{\text{pol.}} &= \Delta_{LT} + \Delta_{TT} + \Delta_{F_2} = \frac{m}{2\pi(1+\kappa)M} \left(\delta_{LT} + \delta_{TT} + \delta_{F_2} \right), \\ \delta_{LT} &= \frac{4M}{\alpha\pi^2} \int_0^\infty dQ \int_0^{x_0} dx \, \frac{1}{v_l + v_x} \frac{1}{x^2 + \tau} \left[1 - \frac{1}{(1+v_l)(1+v_x)} \right] \sigma_{LT}(x, Q^2), \\ \delta_{TT} &= \frac{4M^2}{\alpha\pi^2} \int_0^\infty \frac{dQ}{Q} \int_0^{x_0} \frac{dx}{x} \frac{1}{1+v_l} \left[\frac{2\tau}{x^2 + \tau} + \frac{1}{(v_l + v_x)(1+v_x)} \right] \sigma_{TT}(x, Q^2), \\ \delta_{F_2} &= 2 \int_0^\infty \frac{Q}{Q} \frac{5 + 4v_l}{(v_l + 1)^2} F_2^2(Q^2) \end{split}$$

 $v_l = \sqrt{1 + 1/\tau_l}, \ v_x = \sqrt{1 + x^2 \tau^{-1}}, \ \tau_l = Q^2/4m^2, \ \tau = Q^2/4M^2$ Kinematic functions

• Rewritten in terms of scattering cross sections

HFS of μH in Covariant BχPT: Cancellations

- LO BxPT result $E_{hfs}^{\langle LO \rangle \text{ pol.}}(1S, H) = 0.69(2.03) \text{ peV}$ $E_{hfs}^{\langle LO \rangle \text{ pol.}}(1S, \mu H) = 6.8(11.4) \mu \text{eV}$
- Consistent with zero
- Cancellations!

Hagelstein, VL, Pascalutsa (2022)

- The LT and TT contributions are large and almost cancel each other
- The LO BχPT result is nearly zero

— Ε(Δ_{pol.})

— Ε(Δ_{LT})

— Ε(Δ_{TT})

-- E(Δ_1)

 $- E(\Delta_2)$

Sizeable uncertainty

HFS of μH in Covariant BχPT: Scaling w. Lepton Mass

- Cancellations seem to affect the scaling
- Can the data-driven evaluations be affected?

11 / 17

HFS of μH in Covariant BχPT: More Cancellations

$$egin{aligned} E_{\mathsf{hfs}}(nS) &= rac{8}{3} rac{Zlpha}{(an)^3} rac{1+\kappa}{mM} \left(1+ arDelta_{\mathsf{QED}} + arDelta_{\mathsf{weak}} + arDelta_{\mathsf{strong}}
ight) \ &\Delta_{\mathsf{strong}} &= arDelta_{\mathsf{Z}} + arDelta_{\mathsf{recoil}} + arDelta_{\mathsf{pol}} \end{aligned}$$

$$\begin{split} \Delta_{\text{pol.}} &= \Delta_1 + \Delta_2 = \frac{Zm}{2\pi(1+\kappa)M} \left(\delta_1 + \delta_2\right), \\ \delta_1 &= 2\int_0^\infty \frac{dQ}{Q} \left\{ \frac{5+4v_l}{(v_l+1)^2} \left[\frac{4l_1(Q^2)}{Z^2} + F_2^2(Q^2) \right] - \frac{32M^4}{Q^4} \int_0^{x_0} dx \, x^2 g_1(x, Q^2) \right. \\ &\times \frac{1}{(v_l+v_x)(1+v_x)(1+v_l)} \left(4 + \frac{1}{1+v_x} + \frac{1}{v_l+1} \right) \right\}, \\ \delta_2 &= 96M^2 \int_0^\infty \frac{dQ}{Q^3} \int_0^{x_0} dx \, g_2(x, Q^2) \left(\frac{1}{v_l+v_x} - \frac{1}{v_l+1} \right) \end{split}$$

$$I_1(0) = -\frac{\kappa^2}{4} \qquad F_2(0) = \kappa$$

- Cancellation between the Pauli form factor and the intelastic contributions
- Enhanced at low *Q*!

HFS of μH in Covariant BχPT: Zemach Radius

• The smallness of the Zemach radius compensates the smallness of the polarisability contribution:

$$\Delta_Z = -2Z\alpha m_r R_Z$$

Deuteron Charge Radius and 2y Exchange in µD

Deuteron Charge Radius and 2y Exchange in µD

- The deuteron charge form factor is consistent with **χ**EFT
- Inelastic 2y agrees with other calculations

• Elastic 2γ is several std. deviations larger than with Abbott et al. form factor

- Correlation between the charge and Friar radii; can be used to test ff parametrisation
- Abbott et al. parametrisation appears to not give good results for low Q properties
- Agreement with **x**EFT vindicates both EFTs

Problems to Address

Proton

- Subtraction function: can it be constrained with a better precision?
 - LEX constraints from VVCS, Euclidean Subtraction, LQCD?
- HFS:
 - better theory accuracy possible?
 - can data-driven calculations be affected by cancellations?
 - are there potential pitfalls with lepton mass scaling?

Deuteron and heavier muonic atoms:

- Nuclear part
 - seems to be under control (pionless/chiral EFT)
 - smaller uncertainty should be possible
 - empirical data/parametrisations may sometimes fail
- Nucleon part
 - becoming increasingly important with bigger Z and A
 - neutron?

Thank You for Your Attention!