Nuclear structure corrections in light muonic atoms

Simone Salvatore Li Muli

Sonia Bacca

G

Image credit: Oak Ridge National Laboratory, US department of energy, Conceptual art by LeJean Hardin and Andy Sproles

Muonic atoms

Hydrogen-like systems

Muonic atoms

The muon is more sensitive to the nucleus

Excellent precision probe for the nucleus

Experimental program at **PSI** of the **CREMA** collaboration

Muonic Hydrogen

- Pohl et al., Nature (2010) - Antognini et al., Science (2013)

Muonic Deuterium - Pohl et al., Science (2016)

Muonic Helium-4 - Krauth et al., Nature (2021)

$$\delta_{\rm LS} = \delta_{\rm QED+NR} + \delta_{\rm NS}^{(4)} \times r_c^2 + \delta_{\rm NS}^{(5)} + \delta_{\rm NS}^{(6)} + \dots$$

$$\delta_{\rm LS} = \delta_{\rm QED+NR} + \delta_{\rm NS}^{(4)} \times r_c^2 + \delta_{\rm NS}^{(5)} + \delta_{\rm NS}^{(6)} + \dots$$

$$\delta_{\rm LS} = \delta_{\rm QED+NR} + \delta_{\rm NS}^{(4)} \times r_c^2 + \delta_{\rm NS}^{(5)} + \delta_{\rm NS}^{(6)} + \dots$$

$$\delta_{\rm LS} = \delta_{\rm QED+NR} + \delta_{\rm NS}^{(4)} \times r_c^2 + \delta_{\rm NS}^{(5)} + \delta_{\rm NS}^{(6)} + \dots$$

A matter of precision

$$\delta_{\rm LS} = \delta_{\rm QED+NR} + \delta_{\rm NS}^{(4)} \times r_c^2 + \delta_{\rm NS}^{(5)} + \delta_{\rm NS}^{(6)} + \dots$$

For the muonic Helium-4 ion

$$\begin{split} \delta_{\rm QED+NR} &= +1,668.489(14) \text{ meV} \\ \delta_{\rm NS}^{(4)} &= -106.220(8) \text{ meV fm}^{-2} \\ \delta_{\rm NS}^{(5)} &= +9.340(250) \text{ meV} \\ \delta_{\rm NS}^{(6)} &= -0.150(150) \text{ meV} \end{split} \qquad \textbf{T}_{c} = 1.67824(13)_{\rm ex}(82)_{\rm th} \text{ fm} \\ \textbf{J. J. Krauth et. al. Nature 589,527 (2021)} \\ \end{split}$$

The Uncertainty is largely dominated by the nuclear structure effects.

Theory

$$\mathbf{H} = \mathbf{H}_N + H_\mu + \Delta V$$

The Nuclear Hamiltonian is included or not depending on whether we look for nuclear sizes or polarizability corrections

$$H_{\mu} = \frac{\mathbf{p}^2}{2m_r} - \frac{Z\alpha}{r}$$

The corrections to the bulk coulomb interactions are included in perturbation theory

$$\Delta V = \sum_{a}^{Z} \alpha \left(\frac{1}{r} - \frac{1}{|\mathbf{r} - \mathbf{R}_{a}|} \right)$$

$$\delta_{\rm NS} = \delta_{\rm FS} + \delta_{\rm pol}$$
$$\delta_{\rm pol}^{(5)} = \langle N_0 \mu | \Delta V \ G \ \Delta V | N_0 \mu \rangle$$

$$\delta_{\text{pol}}^{(5)} = C \sum_{N \neq N_0} \left(\frac{1}{\omega_N}\right)^{\frac{3}{2}} \int d^3 R \ d^3 R' \ \rho_N^p(\mathbf{R}) \ \begin{bmatrix} \eta^2 - \frac{1}{4}\eta^3 + \frac{1}{20}\eta^4 + \dots \end{bmatrix} \ \rho_N^p(\mathbf{R}')$$
LO NLO NLO N2LO

$$\eta = \sqrt{2m_r\omega_N} |\mathbf{R} - \mathbf{R}'| \approx \sqrt{\frac{m_r}{m_N}} \approx 0.33$$

... Some more algebra ...

$$\delta_{\text{pol}}^{(5)} = \sum_{i} \left[C_{i}(Z\alpha, m_{r}) \int_{0}^{\infty} \mathcal{F}_{i}(\omega/m_{r}) S_{O_{i}}(\omega) d\omega \right]$$

Ab-initio Nuclear Theory

Ab-initio methods: Solutions of the time-independent Schrödinger equation for the nuclear states

$$\widehat{H}_{\rm N}\Psi_{\rm N} = E_{\rm N}\Psi_{\rm N}$$

With controlled approximations.

Solutions of Schrödinger Eq.
$$\implies S_{O_i}(\omega) \implies \delta_{\mathrm{pol}}^{(5)}$$

The nuclear Hamiltonian is an input and a big source of uncertainty.

Previous work on Helium-4

Impact of ab-initio theory

The Hamiltonians

Interactions derived from the Chiral effective field theory and written in coordinate space.

Hierarchy among different operators decided after specifying a power counting scheme.

The separation of scales of the operators makes it possible to reliably quantify the uncertainties due to the truncation of the expansion (Ex. With Bayesian Statistics).

Results

Benchmark tests

S.S. LM, S. Bacca, N. Barnea, Front. Phys. 9, 671869 (2021)

NS corrections in muonic Helium

Eta-expansion uncertainty

$$\delta_{\text{pol}}^{(5)} = C \sum_{N \neq N_0} \left(\frac{1}{\omega_N}\right)^{\frac{3}{2}} \int d^3R \ d^3R' \ \rho_N^p(\mathbf{R}) \left[\eta^2 - \frac{1}{4}\eta^3 + \frac{1}{20}\eta^4 + \dots\right] \ \rho_N^p(\mathbf{R}')$$

S.S.LM, et al. 2022 J. Phys. G: Nucl. Part. Phys. 49 105101

	$\mu^2 H$	$\mu^{3}\mathrm{H}$	$\mu^3 \text{He}^+$	$\mu^4 \text{He}^+$
[1]	0.4%	1.3%	1.1%	0.8%
This work	0.8%	1.5%	4.8%	0.9%

[1] C. Ji, et al. J. Phys. G: Nucl. Part. Phys. 45 (2018)

Uncertainties in muonic Helium

S.S.LM, et al. In preparation for 2022

	$\mu^3 \text{He}^+$			 $\mu^4 \text{He}^+$			
	$\delta_{\rm pol}$	$\delta_{\rm Zem}$	$\delta_{ ext{TPE}}$	$\delta_{ m pol}$	δ_{Zem}	$\delta_{ ext{TPE}}$	
	[%]	[%]	[%]	 [%]	[%]	[%]	
Numerical (2019)	0.4	0.1	0.1	0.4	0.3	0.4	
Numerical	0.1	0.2	0.1	0.4	0.3	0.2	
Nuclear model (2019)	0.7	1.8	1.5	3.9	4.6	4.4	
Nuclear model (N2LO)	4.8	6.9	6.2	14.5	9.4	11	
Nuclear model (N3LO)	1.6	1.6	1.4	4.1	2.8	3	
η -expansion (2019) η -expansion	1.1 4.8		0.3 1.4	0.8 0.9		0.2 0.2	

Conclusions

- We re-evaluated numerical, nuclear model and η -expansion uncertainties with chiral perturbation theory and Bayesian techniques.
- Chiral interaction at N2LO can not reduce the uncertainty of $~~\delta_{\rm NS}^{(5)}~~$ improvement can be seen from N3LO.
- We need to reduce the η -expansion uncertainties in $\mu^{3}\mathrm{He^{+}}$.
- It is important to compute the nuclear structure effects at order $\,\delta^{(6)}_{
 m NS}$.
- This formalism needs to be extended to calculate nuclear polarizabilities to the HFS.

Backup

NS effects in 3He+ and 4He+

Uncertainty

Uncertainty sources

- Numerical
- Nuclear model
- Nucleon model
- Truncation of EM multipoles
- **ŋ-expansion**
- Expansion in (Za)

Evaluation of the TPE amplitude

Coulomb Distortion

Contribution coming from intermediate interactions between lepton and nucleus during the TPE process.

We include only the correction of order $(Z\alpha)^6 log(Z\alpha)$

Since we work in the leading dipole approximation, the correction is related to the electric dipole response

• Nucleon size effects

• Relativistic effects

They are smaller by factors $\frac{\omega_{th}}{m_r}$

Includes also first effects from electromagnetic currents. Are evaluated in the leading dipole approximation

$$\delta_{L(T)}^{(0)} = \frac{2m_r^3}{9} (Z\alpha)^5 \int_{\omega_{th}}^{\infty} K_{L(T)} \left(\frac{\omega}{m_r}\right) S_{D1}(\omega)$$

TPE in He-3

28

NS corrections in µ4He+ (EKM)

S.S.LM, et al. In preparation for 2022

