The Proton Spin Structure Function g2p Contribution to Hyperfine Splitting

Muonic Hydrogen Workshop PSI, Switzerland 2022-10-15

Karl Slifer University of New Hampshire

This Talk

The E08-027 (g2p) experiment

Published g_2 and g_1 results

Hyperfine D_{pol} terms

Tensor Program at Jlab

Polarized Target at UNH

Inclusive Scattering

$$\frac{d^2\sigma}{d\Omega dE'} = \sigma_{Mott} \left[\frac{1}{\nu} F_2(x, Q^2) + \frac{2}{M} F_1(x, Q^2) \tan^2 \frac{\theta}{2} \right]$$

$$+ \gamma g_1(x, Q^2) + \delta g_2(x, Q^2)$$

Inclusive <u>Polarized</u> Cross Section

Jefferson Lab Hall A

DNP Solid Polarized Target

Dynamic Nuclear Polarization

5 Tesla Helmholtz Coil 1 Kelvin Helium Evap Fridge 140 GHz uwaves NH3 target material Transverse & Longitudinal

Hall A Beamline

The g2p Experiment

Polarized proton target

upstream chicane downstream local dump Low current polarized beam

Upgrades to existing Beam Diagnostics to work at 85 nA

Lowest possible Q^2 in the resonance region

Septa Magnets to detect forward scattering

Kinematic Coverage

nature physics

Article

Proton spin structure and generalized polarizabilities in the strong quantum chromodynamics regime

https://doi.org/10.1038/s41567-022-01781-y

nature physics

Article

Proton spin structure and generalized polarizabilities in the strong quantum chromodynamics regime

https://doi.org/10.1038/s41567-022-01781-y

nature physics

Article

Proton spin structure and generalized polarizabilities in the strong quantum chromodynamics regime

D. Ruth ¹ R. Zielinski¹, C. Gu², M. Allada (Cummings)³, T. Badman¹, M. Huang⁴, J. Liu², P. Zhu ⁵, K. Allada⁶, J. Zhang⁷, A. Camsonne⁷, J.-P. Chen⁷, K. Slifer ¹ [∞], K. Aniol⁸, J. Annand⁹, J. Arrington^{10,11}, T. Averett ¹⁰, H. Baghdasaryan², V. Bellini¹², W. Boeglin¹³, J. Brock⁷, C. Carlin⁷, C. Chen¹⁴, E. Cisbani¹⁵, D. Crabb², A. Daniel², D. Day², R. Duve², L. El Fassi ^{16,17}, M. Friedman ¹⁸, E. Fuchey¹⁹, H. Gao ⁰, R. Gilman¹⁶, S. Glamazdin²⁰, P. Gueye¹⁴, M. Hafez^{21,22}, Y. Han¹⁴, O. Hansen ⁰, M. Hashemi Shabestari², O. Hen ⁶, D. Higinbotham ⁰, T. Horn²³, S. Iqbal⁸, E. Jensen²⁴, H. Kang²⁵, C. D. Keith⁷, A. Kelleher⁶, D. Keller², H. Khanal¹³, I. Korover²⁶, G. Kumbartzki¹⁶, W. Li²⁷, J. Lichtenstadt²⁶, R. Lindgren², E. Long ⁰, S. Malace²⁸, P. Markowitz ⁰, J. Maxwell^{1,7}, D. M. Meekins ⁰, Z. E. Meziani¹⁹, C. McLean ⁰, R. Michaels⁷, M. Mihovilovič^{29,30}, N. Muangma⁶, C. Munoz Camacho³¹, J. Musson⁷, K. Myers¹⁶, Y. Oh²⁵, M. Pannunzio Carmignotto ⁰, C. Perdrisat³, S. Phillips¹, E. Piasetzky²⁶, J. Pierce^{7,32}, V. Punjabi³³, Y. Qiang⁷, P. E. Reimer ⁰, Y. Roblin ⁰, G. Ron¹⁸, O. Rondon², G. Russo¹², K. Saenboonruang², B. Sawatzky ⁰, A. Shahinyan³⁴, R. Shneor²⁶, S. Širca^{29,30}, J. Sjoegren⁹, P. Solvignon-Slifer^{1,37}, N. Sparveris ⁰, V. Sulkosky⁶, F. Wesselmann ⁰, ³⁵, W. Yan⁵, H. Yang³⁶, H. Yao³, Z. Ye ⁰, M. Yurov ⁰, Y. Zhang¹⁶, Y. X. Zhao⁵ and X. Zheng ⁰²

David Ruth

JP Chen, A. Camsonne, D. Crabb

Ryan Zielinski, C. Gu, M. Cummings-Allada, T. Badman, M. Huang, J. Liu, P. Zhu

K. Allada, J. Zhang

+ Jlab Polarized Target Group

E08-027 Structure Functions

SSF Moments

Generalized GDH Sum

$$\Gamma_1(Q^2) = \int_0^{x_0} \mathrm{d}x \, g_1(x, Q^2)$$

Burkhardt Cottingham

$$\Gamma_2(Q^2) = \int_0^{x_0} dx \ g_2(x, Q^2)$$

-0

ama

$$\begin{split} \gamma_0(Q^2) &= \frac{16\alpha M_N^2}{Q^6} \int_0^{x_0} \mathrm{d}x \, x^2 g_{TT}(x, Q^2), \\ \delta_{LT}(Q^2) &= \frac{16\alpha M_N^2}{Q^6} \int_0^{x_0} \mathrm{d}x \, x^2 \Big[g_1(x, Q^2) + g_2(x, Q^2) \Big] \end{split}$$

Generalized Forward Spin polarizabilities

 $g_{TT} = g_1 - (4M_N^2 x^2/Q^2)g_2$

δ_{LT} Proton (E08–027)

d_2 Proton

1st Moment Γ_1

Proton γ_0

Proton γ_0

Proton g1 (E08-027 vs. CLAS)

courtesy R. Zielinski, UNH

Proton g1 (E08-027 vs. CLAS)

courtesy R. Zielinski, UNH

First evidence for existence of dark matter

 $\Delta E = 1420.405 \ 751 \ 766 \ 7(9) \ \text{MHz}$ $= (1+\delta)E_F$

The finite size of the nucleus plays a small but significant role in atomic energy levels.

 $\Delta E = 1420.405 \ 751 \ 766 \ 7(9) \ \text{MHz}$ $= (1+\delta)E_F$

$$\delta = (\Delta_{QED+weak} + \Delta_{hVP} + \Delta_Z + \Delta_R + \Delta_{pol})$$

 $\Delta E = 1420.405 \ 751 \ 766 \ 7(9) \ \text{MHz}$ $= (1+\delta)E_F$

$$\delta = (\Delta_{QED+weak} + \Delta_{hVP} + \Delta_Z + \Delta_R + \Delta_{pol})$$

$$\Delta_{\rm pol} = \frac{\alpha m}{2\pi (1+\kappa)M} \left[\Delta_1 + \Delta_2\right]$$

$$\Delta_1 = \frac{9}{4} \int_0^\infty \frac{dQ^2}{Q^2} \left[\left(\frac{G_M(Q^2) + G_E^2(Q^2)}{1 + \tau} \right)^2 + \frac{8M_p^2}{Q^2} B_1(Q^2) \right]$$

$$\Delta_1 = \frac{9}{4} \int_0^\infty \frac{dQ^2}{Q^2} \left[\left(\frac{G_M(Q^2) + G_E^2(Q^2)}{1 + \tau} \right)^2 + \frac{8M_p^2}{Q^2} B_1(Q^2) \right]$$

$$B_1(Q^2) = \int_0^{x_{pp}} eta_1(au) g_1(x,Q^2) dx$$

$$\beta_1(Q^2) = \frac{4}{9} \left(-3\tau + 2\tau^2 + 2(2-\tau)\sqrt{\tau(\tau+1)} \right)$$

$$\Delta_1 = rac{9}{4} \int_0^\infty rac{dQ^2}{Q^2} \Big[\Big(rac{G_M(Q^2) + G_E^2(Q^2)}{1 + au} \Big)^2 + rac{8M_p^2}{Q^2} B_1(Q^2) \Big] \qquad \Delta_2 = -24m_p^2 \int_0^\infty rac{dQ^2}{Q^4} B_2(Q^2).$$

$$B_1(Q^2) = \int_0^{x_{pp}} \beta_1(\tau) g_1(x, Q^2) dx$$

$$B_2(Q^2) = \int_0^{x_{
m th}} dx \, eta_2(au) g_2(x,Q^2) \, ,$$

$$\beta_1(Q^2) = \frac{4}{9} \left(-3\tau + 2\tau^2 + 2(2-\tau)\sqrt{\tau(\tau+1)} \right) \qquad \beta_2(\tau) = 1 + 2\tau - 2\sqrt{\tau(\tau+1)},$$

Chiral Perturbation Theory and Dispersive approaches

From A. Antognini's talk

courtesy David Ruth, UNH

Preliminary Evaluation of Δ_1

Term	$Q^2~({ m GeV^2})$	Contribution	Result	Stat	Sys	
Δ_1	(0,0.043)	F_2 and g_1	1.28	0.20	0.83	
	(0.043, 5.0)	F_2	7.65	_	0.45	
	(0.043, 5.0)	g_1	-0.77	0.22	2.46	
	$^{(5.0,\infty)}$	F_2	0.00	_	-	hr.
	$(5.0,\infty)$	g_1	0.45	-	0.45	alimina
Total Δ_1			8.63	0.30	4.19	Pres

Compares favorably with published results

$$\Delta_1 = 8.85 \pm 0.30 \text{ (stat)} \pm 3.57 \text{ (sys)}$$

Phys.Rev.A.78.022517

 g_2 contribution to Δ_{pol}

good agreement with the MAID and most recent Hall B models

 g_2 contribution to Δ_{pol}

good agreement with the MAID and most recent Hall B models

Significant difference from g2ww

Δ_2 Model Dependence

Significant difference from 2007 CLAS model

g2p Experiment Summary

- 1) Published in Nature Physics October 13, 2022
- 2) Longitudinal Data agrees with Hall B (except at threshold).
- 3) δ_{LT} favors Alarcon et al χPT calculation

4) Hyperfine splitting contributions from g_1 is consistent with previous values within large error bars

5) g_2 contribtion is very different from previous model based predictions.

Technical Developments

UNH Polarized Target Lab

3 faculty -Slifer, Long, Santiesteban 1 post-doc

3 grad students: --David R : significant time --Nathalie S. : partial time --Michael S. : full time

lots of undergrads

<u>Projects</u>

- Polarized Target Material Production & Labview controls
- Tensor Polarization R&D

Target Material Production at UNH

Target Material Production at UNH

Butanol and other alcohols solidification

Chemical Doping

grade 5.5 NH₃ & ND₃

Rapid vs SlowCooling of NH_3

Target Material Production at UNH

-Dedicated **fume hood** for Handling Ammonia and other caustic/toxic materials

-Vacuum GloveBox allows for over/under-pressuring

-Primarily chemical doping of ammonia and alcohols for now. But potential to do much more.

Tensor Enhancement by factor of 5.7 after rf-hole burning the left peak 1,2-Propanediol-d8, chemically doped with OX063, with 5T/1K

Deuteron Tensor Enhancement

C12-13-011: The b_1 experiment

30 Days in Jlab Hall C A⁻ Physics Rating C12-15-005: A_{zz} for x>1

44 Days in Jlab Hall C A⁻ Physics Rating

RunGroup Spokespersons

Chen, Day, Higinbothan, Kalantarians, Keller Long, Rondon, Slifer, Solvignon

b₁ structure function

$$b_1(x) = \frac{q^0(x) - q^1(x)}{2}$$

DIS (probing quarks)

but depends on the Deuteron spin state

Data from HERMES

Conventional Nuclear Physics predicts b_1 to be vanishingly small at large x

Khan & Hoodbhoy, PRC 44 ,1219 (1991) : $b_1 \approx O(10^{-4})$ Relativistic convolution model with binding

Umnikov, PLB 391, 177 (1997) : $b_1 \approx O(10^{-3})$ Relativistic convolution with Bethe-Salpeter formalism

W. Cosyn, Y. Dong, S. Kumano, M. Sargsian PRD95 (2017) 074036 Standard Convolution description

Projected Results for Q = 30%

E12-15-005

Very Large Tensor Asymmetries predicted

Sensitive to the S/D-wave ratio in the deuteron wave function

 4σ discrim between hard/soft wave functions 6σ discrim between relativistic models

"further explores the nature of short-range pn correlations, the discovery of which was one of the most important results of the 6 GeV nuclear program."

PAC44 Theory Report

Questions?