THE GEORGE WASHINGTON UNIVERSITY WASHINGTON, DC

Compton Scattering & Polarizabilities at HIGS Evangeline J. Downie

PHY-2012940 (GW)

DE-SC0016581 (GW) DE-FG02-97ER41033 (TUNL) DE-SCO00536 (Ahmed, NCCU)

Images: P. Martel, PhD Thesis (2012)

Compton Scattering & Polarizabilities

- Cross sections small (~nb)
- Backgrounds very large
- Need a thorough systematic check of results

Why two facilities?

Property	HIGS	ΜΑΜΙ	
Beam Mechanism	Laser Compton Backscattering	Tagged Bremsstrahlung	
Beam Energy Distribution	Around a central energy	$1/E_0$ distribution, tagged from ~5% - 92% of E_0	
Maximum Energy	120 MeV	1.6 GeV, typically use 883 MeV or 450 MeV for Compton	
Photon Flux	Max Flux: 10 ⁷ @65MeV, 10 ⁹ at low E	2 x 10 ⁶ rate in max. photon tagger channel	
Polarization Mechanism	Wiggler Cavity	Linear: Diamond radiator Circular: e-beam polarization	
Polarization	Linear or circular, ~100%	Energy dependent	
Backgrounds	Small	Pion Photoproduction	
Detector	High resolution, large volume Nal	Large solid angle, segmented Nal, BaF ₂ , and PbWO ₄	
Polarizability Extraction	Model dependence small, sensitivity small	Model dependence larger, sensitivity higher	

Comparison of HIGS & MAMI

- Photon Compton-backscatters from FEL e⁻ bunch
- Produces photon beam up to 120 MeV
- Passes through FEL mirror into expt.
- Photon pulse 10 ns wide, separated by 179 ns

HIGS Operation

Monoenergetic photons up to ~120 MeV

✓ beam energy resolution depends on collimation

- Close to 100% linear or circular polarization
- High photon beam intensity
 ✓ ~5×10⁶ Hz above 80 MeV
 ✓ ~10⁷ Hz at 20-80 MeV
 ✓ ~10⁸ Hz below 20 MeV

HIGS Facility

- Allows LH₂ / LD₂ / LHe
- Temperature range: 3.5 K 24 K
- Working on adjustments to prepare for ³He

Cryogenic Target

8-cm-thick, optically isolated, Nal shield segments (8 segments) Nal core (25 x 30) cm Paraffin n shield **Pb** collimator

- Array of up to 8 elements
- Can be positioned for optimal coverage
- Both in-plane and out-of-plane
- Shield segments allow cosmic veto

<u>HIGS Nal Detector Array (HINDA)</u>

Setup for ⁴He Experiment

Random Subtraction

WASHINGTON, DC

⁴He(γ,γ)⁴He E_γ= 61 MeV

at Urbana-Champaign, Champaign, IL, 1990

PHYS	ICAL F	REVIEW	С					
Highlights	Recent	Accepted	Authors	Referees	Search	Press	About	۳

EDITORS' SUGGESTION

Compton scattering from ⁴He at 61 MeV

Compton scattering, where the electromagnetic field of a real photon induces radiation multipoles by displacing charges and currents inside the nucleon, is an important probe of both the structure of light nuclei and the nucleon polarizabilities. This paper presents the first extensive and precise measurements of elastic Compton scattering on ⁴He. These results should allow precision comparisons with new calculations expected from both lattice gauge and effective field theories.

M. H. Sikora et al.

Phys. Rev. C 96, 055209 (2017)

M. Sikora et al., PRC 96, 055209 (2017)

⁴He Compton Scattering

⁴He(γ,γ)⁴He

⁴He Compton Scattering

- Polarized Compton scattering on p
- 25.4-mm-diameter lead collimator
- Horizontal Lin. Pol:
 - ✓ 83.4 MeV, 2.7% FWHM
- Circularly pol.
 - ✓ 81.3 MeV, 6.5% FWHM
- On-target intensity $\approx 10^7 \text{ y/s}$.

Experimental Setup

Data Analysis

Background Subtraction

- Efficiencies
- Target thickness
- Target absorption (incident γ)
- Bin center correction factors
- Effective solid angles

Cross Section Extraction

- Efficiencies
- Target thickness
- Target absorption (incident γ)
- Bin center correction factors
- Effective solid angles

Overall Systematic Uncertainty:

- No. of incident $\gamma 2\%$
- Target thickness 1%

Cross Section Extraction

- Efficiencies
- Target thickness
- Target absorption (incident γ)
- Bin center correction factors
- Effective solid angles

Point-to-Point Systematics:

- Cuts to timing spectra
- Cuts on shield energy
- ROI boundaries
- Fitting window
 Varied by individual detector
 Range: 4.5% to 13.8%

Overall Systematic Uncertainty:

- No. of incident $\gamma 2\%$
- Target thickness 1%

Cross Section Extraction

- Efficiencies
- Target thickness
- Target absorption (incident γ)
- Bin center correction factors
- Effective solid angles

Point-to-Point Systematics:

- Cuts to timing spectra
- Cuts on shield energy
- ROI boundaries
- Fitting window
 Varied by individual detector
 Range: 4.5% to 13.8%

Additional Point-to-Point Systematics for perp. 55° & 125° due to uncertainty in distance to target

Overall Systematic Uncertainty:

- No. of incident $\gamma 2\%$
- Target thickness 1%

Cross Section Extraction

$$\alpha_{E1}^{p} = 13.8 \pm 1.2_{\text{stat}} \pm 0.1_{\text{BSR}} \pm 0.3_{\text{theo}},$$

 $\beta_{M1}^{p} = 0.2 \mp 1.2_{\text{stat}} \pm 0.1_{\text{BSR}} \mp 0.3_{\text{theo}},$

- Fit to 16 σ points with BSR constraint
- Agrees with MAMI within uncertainty
- Best uncertainties with unpol. σ

Results

 Measured in region of minimal theory uncertainty

X. Li et al., PRL 128,

132502 (2022)

PDG 2022

$$\alpha_p = (11.2 \pm 0.4) \times 10^{-4} \text{ fm}^3$$

 $\beta_p = (2.5 \pm 0.4) \times 10^{-4} \text{ fm}^3$

- Lots of effort to extract polarizabilities from data!
- Involves close collaboration with theory
 - HBχPT: Griesshammer, McGovern,
 Phillips
 - χEFT: Pascalutsa, Vanderhaghen
 - 🗸 DR: Pasquini
- Thank you to our theory colleagues!

World Data & Theory Efforts

Grießhammer, McGovern and Phillips, EPJ A **52** 139 (2016)

D(γ,γ**)**D

M. Sikora, *PoS* CD2018 (2019) 108 EFT Curves Grießhammer, McGovern, Phillips

Compton Scattering on Deuterium

Compton Scattering on Deuterium

Photo: Danula Godagama, PhD Thesis (2022) University of Kentucky

Detector of lodine and Na (DIANA)

Detector of lodine and Na (DIANA)

NIM A270 (1988) 431

<u>Boston University Nal</u> (BUNI)

24

Images: Danula Godagama, PhD Thesis, University of Kentucky (2022)

<u>Boston University Nal</u> (BUNI)

Highlighted HIGS Compton Measurements

- ¹H: E_γ = 83 MeV linearly polarized beam; X. Li *et al.*, PRL **128**, 132502 (2022)
- ⁴He: E_γ = 61 MeV M. Sikora *et al.*, PRC **96**, 055209 (2017)
 - E_γ = 81 MeV X. Li *et al.*, PRC **101**, 034618 (2020)

Ongoing / Future Measurements

- ²H: E_{γ} = 65, 85 MeV; neutron polarizability, data taken 2020 (under analysis)
- ³He: E_{γ} = 80, 100, 120 MeV; first Compton on A=3, measurement planned for Summer 2023

Older Measurements

- ⁶Li: E_γ = 60, 86 MeV; L. S. Myers et al., PRC 90, 027603 (2014)
- ¹⁶O: E_γ = 62, 84 MeV; commissioning of DIANA; L. S. Myers et al., PRC 86, 044614 (2012)

HIGS Compton Program

- HIGS has the world's highest flux monoenergetic photon beam
- Offers great opportunity to take high statistics Compton scattering data
- Energy region of minimal theoretical uncertainty
- Excellent synergy with Mainz: overlapping E-range, totally different systematics
- None of this would be possible without excellent theory support!

Thank you to the conference organizers!

UNIVERSITY

WASHINGTON, DC

Compton @ HIGS Collaboration