

The muX experiment: muonic atom spectroscopy with microgram target material

Andreas Knecht Paul Scherrer Institute

for the muX collaboration

PSI2022 Satellite Workshop Villigen, Switzerland 11. - 16. 9. 2022

Passive muonic atom spectroscope FET

- Negative muons at rest quickly get captured by surrounding atoms
- Cascade down into 1s state emitting characteristic X-rays
- For heavy muonic atoms: X-rays have MeV energies

e

Muonic atom level scheme

Rhenium measurements

- The two rhenium isotopes ¹⁸⁵Re and ¹⁸⁷Re are the last stable isotopes without a measured, absolute charge radius
- ▶ Their ground states have spin $I=5/2 \rightarrow also$ have access to their quadrupole moment

- Quadrupole moments of ^{185,187}Re extracted from the widening of muonic the 5g->4f transitions
- Working on the extraction of the charge radii from the 2p->1s transition

What about radioactive atoms?

- All stable isotopes (except rhenium) have been measured with muonic atom spectroscopy
- In a few special cases also radioactive isotopes, e.g. americium
 - The paper describes the americium target as "modest weight of 1 gram"

- Nowadays: 0.2 µg of open ²⁴¹Am allowed in muon experimental area...
 - Cannot stop muons directly in microgram targets Need new method!

Atomic parity violation in radium

- 0.243 -Weak interaction leads to parity E158 violating effects in atomic transitions NuTeV (ee) 0.241 (v-nucleus) \rightarrow enhanced in heavy atoms (\propto Z³) due 0.239 to large overlap with nucleus $\ln^2 \theta_{\rm W} (\rm Q)_{\rm \overline{MS}}$ **Q**_{weak} 0.237 (ep) APV PVDIS (¹³³Cs) Extract Weinberg angle using precision 0.235 (e^2H) atomic calculations 0.233 → Needs knowledge of the radium LEP1 Tevatron charge radius with 0.2% accuracy 0.231 LHC Nature 557, 207 (2018) 0.229 -10⁰ 10^{-2} 10² 10⁻⁴ 10⁴ Q (GeV)
 - MS
 - Atomic parity violation fixes weak interaction properties at low momentum

UL SCHERR

Our radioactive targets

SF: 8% α: 92% ²⁴⁴Pu, 8x10⁷ y

²⁴⁸Cm, 3x10⁵ y

- ▶ 5.5 µg target material allowed
- ▹ Gamma rate of ~400 kHz from all daughters
- Interest from atomic parity violation

- ▶ 32.6 µg target material allowed
- Heaviest nucleus accessible

- Stop in 100 bar hydrogen target with 0.25% deuterium admixture
- $\triangleright~$ Form muonic hydrogen μp
- Transfer to deuterium forming µd, gain binding energy of 45 eV
- Hydrogen gas quasi transparent for µd at ~5 eV (Ramsauer-Townsend effect)
- $\triangleright~\mu d$ reaches target and transfers to μRa
- Measure emitted X-rays from cascade

Inspired by work of Strasser et al.

and Kraiman et al.

- Stop in 100 bar hydrogen target with 0.25% deuterium admixture
- Form muonic hydrogen μp
- Transfer to deuterium forming µd, gain binding energy of 45 eV
- Hydrogen gas quasi transparent for µd at ~5 eV (Ramsauer-Townsend effect)
- $\triangleright~\mu d$ reaches target and transfers to μRa
- Measure emitted X-rays from cascade

- Stop in 100 bar hydrogen target with 0.25% deuterium admixture
- $\triangleright~$ Form muonic hydrogen μp
- Transfer to deuterium forming µd, gain binding energy of 45 eV
- Hydrogen gas quasi transparent for µd at ~5 eV (Ramsauer-Townsend effect)
- $\triangleright~\mu d$ reaches target and transfers to μRa
- Measure emitted X-rays from cascade

- Stop in 100 bar hydrogen target with 0.25% deuterium admixture
- Form muonic hydrogen μp
- Transfer to deuterium forming µd, gain binding energy of 45 eV
- Hydrogen gas quasi transparent for µd at ~5 eV (Ramsauer-Townsend effect)
- $\triangleright~\mu d$ reaches target and transfers to μRa
- Measure emitted X-rays from cascade

- Stop in 100 bar hydrogen target with 0.25% deuterium admixture
- Form muonic hydrogen μp
- Transfer to deuterium forming µd, gain binding energy of 45 eV
- Hydrogen gas quasi transparent for µd at ~5 eV (Ramsauer-Townsend effect)
- $\triangleright~\mu d$ reaches target and transfers to μRa
- Measure emitted X-rays from cascade

Ramsauer-Townsend effect

- Quantum mechanical effect in the scattering transitions due to matching of muonic atom wavelength and scattering potential
- Hydrogen gas quasi-transparent for µd at 4 eV
- ▶ No minimum in scattering on D₂ -> need to limit total D₂ concentration

Processes in gas cell

- Simplified time evolution of muonic atoms in gas cell by solving coupled differential equations
- Assumes single production rate of µX production → need Monte Carlo to take geometry and scattering into account

Simulation of transfer

- Developed simulation to predict efficiency of transfer
- Momentum of beam determines stopping distribution with respect to the target
- Deuterium concentration determines speed of transfer but limits range due to µd+D₂ scattering

Andreas Knecht

Adamczak et al., arXiv:2209.14365 (2022)

Developed setup to perform muonic atom spectroscopy with microgram target material

muon veto detector gas cell

target

electron veto

detectors

 H_2/D_2 gas

system

PSI Proton Accelerator HIPA

PAUL SCHERRER INSTITUT

Entrance & veto scintillators

Entrance detector

Andreas Knecht

100 bar hydrogen target

- Target sealed with 0.6 mm carbon fibre window plus carbon fibre/titanium support grid
- Target holds up to 350 bar
- 10 mm stopping distribution (FWHM) inside 15 mm gas volume
- Target disks mounted at the back of the cell

Germanium detector array

2017/2018

- I1 germanium detectors in an array from French/UK loan pool, Leuven, PSI
- First time a large array is used for muonic atom spectroscopy

- Miniball germanium detector array from CERN
- 26 germanium crystals in total

Warr et al., Eur. Phys. J. A 49, 40 (2013)

Experimental setup 2017/2018

- Optimisation of transfer process insid
- Good understanding of all processes
- Good matching of simulation and dat

Andreas Knecht

Time evolution

- Speed of transfer depends on D₂ concentration
- Good match between simulation and data

Measurement with microgram gold target

- Measurement with 5 µg gold target as proof-of-principle
- Spectrum taken over 18.5 h

Measurement with microgram gold target

- ▶ Measurement with 5 µg gold target as proof-of-principle
- Spectrum taken over 18.5 h

Radioactive targets

15.5 µg ²⁴⁸Cm target

4.4 μg ²²⁶Ra target

1.4 µg ²²⁶Ra target

- Made by a combination of electroplating and drop-on-demand printing by Institut für Kernchemie, Mainz
- Difficult to make thin targets that have only very little organic contamination
- ▶ We did not observe anything from 4.4 μ g radium target; only hints from 1.4 μ g target
- For both curium and radium target we suffered from palladium contamination —> only about 1/3 of muons went to target material

How to get to good S/B ratio at high energies?

How to get to good S/B ratio at high energies?

$2p \rightarrow 1$ s hyperfine transitions in ^{248}Cm

PAUL SCHERRER INSTITUT

September 2022 measurement

А

Towards the measurement of ²²⁶Ra:

measured implanted gold targets

В

 measured barium deposition targets (drop-on-demand, molecular plating)

First **low-Z** elements tests with enriched ⁶Li and ^{nat}Li samples using a silicon drift detector

С

Expand towards **medium-Z** elements:

- measured ³⁹K (5.7 µg) using the muX method
- future goal: measure triplet ³⁹K, ⁴⁰K, ⁴¹K
- improve laser spectroscopy results

Andreas Knecht

Conclusions

- Muonic atom spectroscopy is a powerful tool to study properties of nuclei (charge radius, quadrupole moment, nuclear structure)
- muX project developed method based on transfer reactions to perform measurements with microgram target material
- Measured muonic curium spectrum for the first time!
- ▶ Radium measurements to come; other isotopes under consideration, e.g. ⁴⁰K

muX collaboration

A. Adamczak¹, A. Antognini^{2,3}, E. Artes⁴, N. Berger⁴, T. Cocolios⁵,
N. Deokar⁴, R. Dressler², Ch.E. Düllmann^{4,6,7}, R. Eichler², M. Heines⁵,
H. Hess⁸, P. Indelicato⁹, K. Jungmann¹⁰, K. Kirch^{2,3}, A. Knecht²,
E. Maugeri², C.-C. Meyer⁴, J. Nuber^{2,3}, A. Ouf⁴, A. Papa^{2,11}, N. Paul⁹,
R. Pohl⁴, M. Pospelov^{12,13}, D. Renisch^{4,7}, P. Reiter⁸, N. Ritjoho^{2,3},
S. Roccia¹⁴, M. Seidlitz⁸, N. Severijns⁵, A. Antognini^{2,3},
K. von Schoeler³, N. Warr⁸, F. Wauters⁴, and L. Willmann¹⁰

¹Institute of Nuclear Physics, Polish Academy of Sciences, Krakow, Poland ²Paul Scherrer Institut, Villigen, Switzerland ³ETH Zürich, Switzerland ⁴Johannes Gutenberg University Mainz, Germany ⁵KU Leuven, Belgium ⁶GSI Helmholtzzentrum für Schwerionenforschung Darmstadt, Germany ⁷Helmholtz Institute Mainz, Germany ⁸Institut für Kernphysik, Universität zu Köln, Germany ⁹LKB Paris, France ¹⁰University of Groningen, The Netherlands ¹¹University of Pisa and INFN, Pisa, Italy ¹²University of Victoria, Canada ¹³Perimeter Institute, Waterloo, Canada ¹⁴Université Grenoble Alpes, CNRS, Grenoble INP, LPSC-IN2P3, France.

Andreas Knecht

Backup

Muonic atom spectroscopy

- Nuclear polarisation is the dominating factor that in the end determines the accuracy of the extracted charge radius
- Typically assumed uncertainty: 10 - 30%
- Nuclear excitation spectra important
- Looking for theorists that want to tackle these calculations with modern methods

TABLE II. Theoretical nuclear polarization corrections in ²⁰⁸ Pb.										
Energy (MeV)	Γ	$B(E\lambda)\uparrow \\ (e^2b^{2\lambda})$	1s _{1/2} (eV)	$2s_{1/2}$ (eV)	$2p_{1/2}$ (eV)	$2p_{3/2}$ (eV)	$3p_{1/2}$ (eV)	3 <i>p</i> _{3/2} (eV)	$\frac{3d_{3/2}}{(eV)}$	3 <i>d</i> _{5/2} (eV)
2.615	3-	0.612	135	12	90	84	26	26	111	-63
4.085	2+	0.318	198	20	182	180	76	84	6	4
4.324	4+	0.155	14	1	8	7	2	2	1	1
4.842	1-	0.001 56	7	1	-9	-8	0	0	1	1
5.240	3-	0.130	27	2	16	15	5	5	2	2
5.293	1-	0.002 04	9	2	-27	-19	0	-1	1	1
5.512	1-	0.003 80	16	3	-90	-53	-1	-1	1	1
5.946	1-	0.00007	0	0	3	- 30	0	0	0	0
6.193	2+	0.050 5	29	3	22	21	7	7	0	0
6.262	1-	0.000 24	1	0	3	5	0	0	0	0
6.312	1-	0.000 22	1	0	3	4	0	0	0	0
6.363	1-	0.000 14	1	0	2	2	0	0	0	0
6.721	1-	0.00075	3	1	6	7	0	-1	0	0
7.064	1-	0.001 56	6	1	9	11	-1	-1	0	0
7.083	1-	0.000 75	3	1	4	5	-1	-1	0	0
7.332	1-	0.002 04	8	1	10	11	-2	-2	0	0
Total low-lying states			458	48	233	242	111	117	123	- 53
13.5	0+	0.047 872	906	315	64	38	24	15	1	0
22.8	0+	0.043 658	546	147	43	26	15	10	0	0
13.7	1-	0.537 672	1454	221	786	738	255	258	66	54
10.6	2+	0.761 038	375	37	237	222	67	68	33	30
21.9	2+	0.566 709	207	21	108	99	29	29	8	7
18.6	3-	0.497 596	77	7	40	36	11	11	3	2
33.1	3-	0.429 112	53	5	25	23	7	7	2	1
	> 3 ^a		176	15	80	71	21	21	4	4
Total high-lying states			3794	768	1383	1253	429	419	117	98
	Tota	1	4252	816	1616	1495	540	536	240	45

^aValues from Ref. 7. Positive NP values mean that the respective binding energies are increased.

Bergem et al., PRC 37, 2821 (1988)