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• Δ𝑟𝑐 ∝ 𝑁𝑒𝑢𝑡𝑟𝑜𝑛 𝑆𝑘𝑖𝑛

• Motivates 
𝛿𝑟𝑐

𝑟𝑐
< 10−3

• Light nuclei needed (Large (𝑁 − 𝑍)/𝐴)
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Next generation experiments 
for light nuclei would be limited 
by knowledge of radius

Contributions to bound-electron g-factors in hydrogen-like ions

S. Sturm, et. al. PRA 87, 030501(R) (2013)
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• Best bound > 10𝑀𝑒𝑉 from H-D electronic (1S-2S) 
and muonic (2S-2P) isotope shifts

• 2nd best: 20,22Ne Muonic (1S-2P) vs. electronic (g-
factor) isotope shifts. Limited by muonic 
experiment + Nuclear Polarization.

• Motivation for improved isotope shifts experiment 
and theory in light even-even pairs: µ16,18O, 
µ20,22Ne…

Nature volume 606, pages 479–483 (2022)
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Electron scattering, less accurate and 
systematics usually NOT under control

• For 𝐙 = 𝟔

E(2P-1S)~75 keV, measured with crystal 
spectrometer. Limited by resolution ~75 eV

Determinations of nuclear RMS charge radii
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• Limited by HPGe resolution, and Crystal-spec 
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micro-calorimeters

Operation at low temperature (T < 0.1 K):

small specific heat

large temperature change

small thermal noise

Temperature change

Relaxation to bath temperature

Thermal bath
(T < 100mK)

Weak thermal link G Absorber C

Thermometer

X-ray photon or particle

Slides courtesy of Andreas Fleischmann



Thermal bath
(T < 100mK)

Weak thermal link G Absorber C

Thermometer

X-ray photon or particle

thermometer concepts Slides courtesy of Andreas Fleischmann



metallic magnetic calorimeters

paramagnetic sensor:  Au:Er500ppm , Ag:Er

signal size:

M

T

Slides courtesy of Andreas Fleischmann



signal decay
decay time

adjusted by sputtered thermal link (Au)

here: 3 ms @ 30 mK

On-chip thermal bath

m
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time

Keep rates < 10 Hz per pixel to avoid pileup

Slides courtesy of Andreas Fleischmann



(One of) The Heidelberg Metallic magnetic calorimeter (MMC)

Slides courtesy of Andreas Fleischmann



233U + 241Am  spectrum

229Th

229Th

Co-added 20 channels

Slides courtesy of Andreas Fleischmann



energy resolution at 60 keV

9.8 eV

Energy resolution ΔEFWHM = 9.8 eV @ 59 keV

World record resolving power: 6000 

Slides courtesy of Andreas Fleischmann



Calibration

non-linearity

Slides courtesy of Andreas Fleischmann

• non-linearity well-understoop and 
thermodynamically expected

• Sub-eV agreement for carefully selected calibration 
lines.

• Careful check of calibration lines for ≪ 𝑒𝑉 accuracy
Use crystal spectrometer @ LKB  



Moving MMC from Heidelberg to Vienna



Moving MMC from Heidelberg to Vienna

What can we do with them at PSI?



The experimental gap:



• Determine 𝐸 2𝑃 − 1𝑆 for 3 ≤ 𝑍 ≤ 8 with 
10 ppm accuracy 0.2 − 1 eV .

• 12C as benchmark

• Improve radii by factor 3 − 10.

• maXs-30 up to 60keV (Li, Be, B)

QUARTET precision goals (“phase 1”):
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Applications of QUARTET phase 1:

PRC 84, 024307 (2011) PRL 108, 142501 (2012)PRL 122, 182501 (2019)

Li chain: Be chain: 10,11B:

• Improve radii of all measured isotopes of Li, Be, and B.

• Benchmark nuclear theory

• Muonic isotope shift -> Benchmark many-body QED
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Applications of QUARTET phase 1:

Mirror radii at large asymmetry:

8B isotope shift measurements 
ongoing at NSCL



Enabling the laser spec. of monic Li/Be(?):

• MMCs: Improve 𝑟𝑐 of 6Li by factor ~5.

• Narrow 2S-2P wavelength search from 200 nm to 50 nm

• Similarly for Be (but more challenging)
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New from the oven: 6,7Li 1S-nP measured with Silicon drift detector

Preliminary! 
Preliminary! 

FWHM 245 eV

Very exciting result going already beyond the state-of-the-art!
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First experiments

@ JPARC

• First measurements with TES microcalorimeter @ JPARC

• 𝜇𝑁𝑒 5𝑔 − 4𝑓 @6 𝑘𝑒𝑉. Limited by pileup to ~0.1 𝑒𝑉

• PSI CW beam, higher rates with negligible pileup. Order 
of magnitude improvement “straightforward”.

• Measurements of transitions between non-S states in 
noble gasses @ PSI with MMCs

See talk on Monday by Nancy PaulQED at high fields:



Applications of QUARTET “phase 2”:

• From g-factor: Δ𝑟𝑐 𝑒𝑁𝑒 = −0.318(3)𝑓𝑚

• BSM reach limited by Δ𝑟𝑐 𝜇𝑁𝑒 = −0.310(35)𝑓𝑚

• Motivation to improve 𝜇𝑁𝑒 by factor 12 

• Measure Δ(1S-2S)@200keV with 0.5eV uncertainty

• Note: Isotope shifts depends less on calibration & 
theory

Muonic isotope shifts for new physics searches



Main needed inputs:

• For Li-Ne ≲ (5 𝑝𝑝𝑚)(𝐸2𝑃−1𝑆) (~10%)

• For isotope shifts ≲ (3 𝑝𝑝𝑚)(Δ𝐸2𝑃−1𝑆) (~5%)

• For non-S states, e.g. ≲ (1 𝑝𝑝𝑚)(Δ𝐸3𝐷−2𝑃)

From theory, mainly nuclear polarization 

From experiment, mainly charge distributions
Motivation for modern electron scattering 
experiments: Li, Be, B, N, O, …
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Thank you



Benchmarking TPE calculations. Muonic vs. electronic isotope shifts:

Optical (simple systems inc. HCI)

G-factor in HCI

Optical + many body atomic calculations


