

Jun Zhu :: Paul Scherrer Institute

TOMCAT data reduction and processing pipelines development

August 17, 2022

- Overview

- **TOMCAT live reconstruction pipeline (tomcat-live)** on-the-fly data reduction and processing

- General data reduction and processing pipeline prototype (drappp)

- Joined AWI in January
- Main task: SLS2.0 data processing and reduction
- TOMCAT beamline as a starting point

Live reconstruction pipeline - goal

Retrospective data readout based on real-time tomographic reconstruction

Peak data rate > 100 TB/day (at the start of SLS2.0 operation?)

Live reconstruction pipeline – starting point

- RECAST3D

https://github.com/cicwi/RECAST3D

- > Not dedicated for TOMCAT
- > client-server architecture
 - client: 3D GUI in OpenGL
 - server: preprocessing (CPU) and reconstruction (GPU, ASTRA Toolbox)

- Proof-of-principle test was performed in 2019

- Buurlage, JW., et al. Sci Rep 9, 18379 (2019)
- > Server: temporary solution with code from RECAST3D
- > Not performed in a continuous way
 - The existing GigaFRoST backend was not optimized for live data processing.
- > Throughput
 - 410 MB/s on NVIDIA Quadro K6000 (12 GB)
 - Up to 700 MB/s on the GPU node at TOMCAT

Live reconstruction pipeline – current status

- Pure C++17 library (Python plug-in removed)
- performance-critical code
- Replaced "home-made" dependencies with standard libraries
- parallel programming \rightarrow oneTBB, logging \rightarrow spdlog, program options \rightarrow boost, ...
- Extensive code clean-up
- Added unit tests
- Identified and fixed issues with the infrastructure
 - Credit: Leonardo Sala and others
- Performance optimization \rightarrow throughput up to 2.1 GB/s (3 x)

GPU node: NVIDIA V100 32 GB, Intel Xeon Gold 6248R (24 cores / 48 threads)

- Integrated tomcat-live (new name) with the existing DAQ
 - Ready for test during beamtime

Live reconstruction pipeline – DAQ

- Existing DAQ

- > Frame IDs are wildly unordered: ... 6000, 2001, 2010, 2005, 6008 ...
- > A workaround was implemented in tomcat-live to cope with this problem

A number of projection groups waiting to be filled ...

- Standard DAQ

> Frame IDs are expected to be ordered.

Live reconstruction pipeline – GUI

- Three high-resolution slices and a low-resolution volume are reconstructed in real-time.

- Slices can be reconstructed on-demand.

Arbitrary orientations of the slices can be selected.

Live reconstruction pipeline – data reduction

SDSC machine learning proposal: Smart Data Acquisition for Tomoscopy Experiments

- "Compression ratio" 4 40 vs < 4 for safe lossy compression
- Team up with TOMCAT and Controls
- Passed the pre-proposal phase

Live reconstruction pipeline – next steps

- Tests during in-house beam times (August and September)
- Deployment
- Hand it over to users
- Improve user experience and add more features
- Finish the full proposal of the SDSC project (by October 24)
- Integrate it with the standard DAQ (after November)

General data reduction and processing pipeline prototype

Requirements (TOMCAT):

- Fast and flexible (plug and play).
- Run on laptops and HPC clusters.
- Save and load the result for each step.

Current status:

- First draft functioning (interfaces to be defined).
- Collaborating with Alain to integrate the existing pipeline.
- Briefly explored other frameworks such as AiiDA and Zocalo.
- Starting to collect requirements from the other beamlines.

	Host	PID	Uptime (s)	CPU	RAM	Plasma	Disk	Sent	Received	Logs	Errors
+ ra	a-c-018.psi.ch (129.129.85.78)	32 workers / 32 cores	20d 18h 13m 28s	84.3%	28.1 G/B / 251.6 G/B (11%)	0.0 MiB / 72111.3 MiB	4.3 G/B / 35.0 G/B (12%)	0.1 MB/S	0.0 MB/S	View all logs (183 lines)	No errors
+ 1	a-c-019.psi.ch (129.129.85.79)	32 workers / 32 cores	20d 18h 13m 43s	81.6%	27.7 G/B / 251.6 G/B (11%)	0.0 MB / 72110.6 MB	4.3 GiB / 35.0 GiB (12%)	0.1 MB/s	0.0 Mi8/s	View all logs (176 lines)	No errors
+ 0	i-c-020.psi.ch (129.129.85.80)	32 workers / 32 cores	20d 18h 13m 42s	84.4%	28.0 GiB / 251.6 GiB (11%)	0.0 MB / 72115.6 MB	4.3 GiB / 35.0 GiB (12%)	0.1 MB/s	0.0 Mi8/s	View all logs (183 lines)	No errors
	a-c-017.psi.ch (129.129.85.77)	32 workers / 32 cores	14d 01h 45m 53s	76.0%	27.7 GB / 251.6 GB (11%)	0.0 MiB / 72077.5 MiB	4.3 GiB / 35.0 GiB (12%)	0.6 MB/s	0.2 Mill/h	View all logs (241 lines)	No errors
	ray (PID: 22322)	start_switch()	00h 01m 00s	3.1%	71.3 MiB	NA	N/M.	NJA	NA	View log (1 line)	No errors
	ray (PID: 22324)	start_switch()	00h 01m 00s	3.1%	341.3 MiB	NA	NW	NA	N(4)	View log (1 line)	No errors
	ray (PID: 22418)	process_task()	00h 00m 56s	102.6%	453.0 MB	N/A	N/A	NA	NA	View log (7 lines)	No errors
	ray (PID: 22415)	process_task0	00h 00m 56s	102.6%	452.9 MB	NA	N/A	NA	NA	View log (7 lines)	No errors
	ray (PID: 22469)	process_task()	00h 00m 55s	102.2%	452.9 MB	NA	N/A	NJA	NJA	View log (7 lines)	No errors
	ray (PID: 22472)	process_task()	00h 00m 55s	103.0%	453.0 MB	NA	NA	NA	NA	Vew log (7 lines)	No errors
	ray (PID: 22473)	process_task()	00h 00m 55s	102.2%	453.0 MB	NA	N/A	NA	NA	View log (7 lines)	No errors
	ray (PID: 22474)	process_task()	00h 00m 55s	102.6%	452.9 MB	NA	NA	NA	NA	View log (7 lines)	No errors
	ray (PID: 22476)	process_task()	00h 00m 55s	102.6%	452.9 MB	NA	NA	NA	NA	View log (7 lines)	No errors
	ray (PID: 22481)	process_task()	00h 00m 55s	102.6%	453.0 MB	NA	NA	NA	NA	View log (7 lines)	No errors
	ray (PID: 22483)	process_task()	00h 00m 55s	102.2%	453.1 MB	NJA	N/A	NA	NA	View log (7 lines)	No errors
	ray (PID: 22484)	process_task()	00h 00m 55s	102.2%	452.8 MB	NJA	NA	NA	NA	View log (7 lines)	No errors
	ray (PID: 22405)	process_task()	00h 00m 55s	102.2%	452.9 MB	NA	NA	NA	NA	View log (18 lines)	No errors
	ray (PID: 22486)	process_task()	00h 00m 55s	102.6%	452.9 MB	NJA	NA	NA	N/A	View log (7 lines)	No errors
	ray (PID: 22487)	process_task()	00h 00m 55s	102.6%	454.8 MB	NJA	NA	NA	NA	View log (7 lines)	No errors
	ray (PID: 22488)	process_task0	00h 00m 55s	103.0%	452.8 MB	NJA	NA	NA	NA	View log (7 lines)	No errors
	ray (PID: 22489)	process_task()	00h 00m 55s	101.8%	453.0 MB	NA	N/A	NA	NA	View log (7 lines)	No errors
	ray (PID: 22490)	process_task()	00h 00m 55s	102.6%	452.8 MB	NA	N/A	NA	N/A	View log (18 lines)	No errors
	ray (PID: 22491)	process_task()	00h 00m 55s	102.2%	452.9 MB	NA	NJA	NA	N(A	View log (18 lines)	No errors
	ray (PID: 22492)	process_task()	00h 00m 55s	102.6%	453.0 MB	NA	NA	NA	N/A	View log (18 lines)	No errors
	ray (PID: 22493)	process_tesk0	00h 00m 55a	102.2%	452.9 MB	NA	NA	NA	NA	View log (7 lines)	No errors

Acknowledgements

My thanks go to

- Markus Janousch
- Leonardo Sala
- Leonardo Hax Damiani
- Christian Schlepütz
- Alain Studer
- Xingxing Yao
- Tadej Humar
- Goran Lovric

....

Federica Marone

