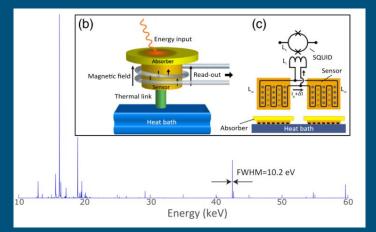
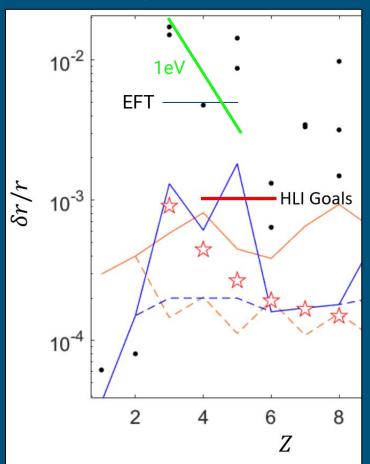

QUARTET


Narrowing Physics Cases

Choice of cases

lsot.	E_{1S-2P} keV
²⁰ Ne	207
¹⁹ F	169
¹⁶ O	134
¹⁴ N	102
¹² C	75
¹¹ B	52
⁹ Be	33
⁷ Li	19

maXs-30



Conservative physics reach (absolute radii):

_	E(2p-1s) keV	δr/r @ 1eV	δr/r scat.	δr/r EFT
Li6/7	19	2%	2%	0.5%
Be	33	0.6%	0.5%	0.5%
B10/11	52	0.3%	1%	0.5%

Opinion: Either sub 1eV or focus on Boron

Literature

- <u>Measured simultaneously</u>: Be, B, N
- BN thickness 1g/cm, 90% transparent @50keV
- Germanium resolution was 1 keV
- 6 Hours run time, ~kHz counting rates
- Stat unc ~eV, Limited to ~10eV by calibration!
- Unresolved fine-structure / Hyperfine, Isotope shifts

For similar run time, our required rates @ 10 eV resolution are ~0.1 Hz total to reach <eV statistical uncertainty

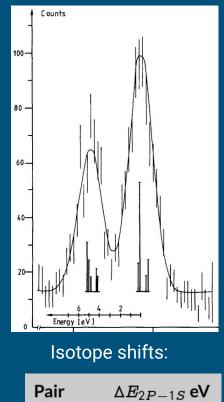
NUCLEAR CHARGE RADII FROM MUONIC X-RAY TRANSITIONS IN BERYLLIUM, BORON, CARBON AND NITROGEN ¹

L. A. SCHALLER, L. SCHELLENBERG, A. RUETSCHI and H. SCHNEUWLY Institut de Physique de l'Université, CH-1700 Fribourg, Switzerland

Be			В
Transition	present work 2cm ³ Ge	refs. 15, 16)	present work 2cm ³ Ge
2p-1s	33402 (0.8; 10)	52259 (6)	52257 (0.7; 7)
3p-1s	39581 (1.0; 10)	61946 (1.4;	
4p-1s	41746 (2.2; 12)		65330 (2.8; 7)

CHARGE-DISTRIBUTION PARAMETERS, ISOTOPE SHIFTS, ISOMER SHIFTS, AND MAGNETIC HYPERFINE CONSTANTS FROM MUONIC ATOMS

> R. ENGFER,* H. SCHNEUWLY,⁺ J. L. VUILLEUMIER,* H. K. WALTER* and A. ZEHNDER* CERN, Geneva, Switzerland


Iso-		Ref.
tope	2p-1s	
"He	8.18(4)	67WB1
	8.18(7)	71PP1
	8.228(4)	74BE1
⁶ Li	18.1(4)	66JK1
	18.64(7)	68HS1
⁷ Li	18.1(4)	66JK1
	18.69(6)	68HS1
	tope "He ⁶ Li	tope 2p-1s ⁴ He 8.18(4) 8.18(7) 8.228(4) ⁶ Li 18.1(4) 18.64(7) ⁷ Li 18.1(4)

Features in spectra

- Very narrow natural linewidths.
- Isotope shifts are resolved (no need for enrichment). Less sensitive to calibration uncertainty. Are we sure, 6Li has only 7% abundance, so you need many sigma's separation -> check with cascade code!
- Difficult to resolve fine/hyperfine-structure (use cascade code).

	LW eV	FS eV	HFS eV
¹¹ B	~0.4	6	
⁹ Be	0.22	2.4	
⁷ Li	0.07	0.7502(2)	4.659(9)

7Li-HFS (crystal):

62

50

10,11 B

6,7Li

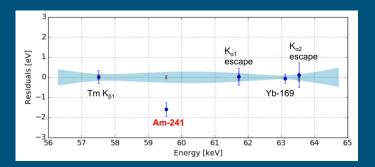
Available close calibration lines

Gammas keV(unc. in eV):

	B (52.3 keV)	Be (33.4 keV)	Li (18.7 keV)	
241Am	59.5 (0.4)	33.2 (0.3)	26.3 (0.2)	
210Pb	47 (1)			
152Eu				
133Ba	53.2 (0.6)			
228Th				
109Cd				
57Co			14 (0.3)	

Daughter x-rays keV(unc. eV)

	B (52.3 keV)	Be (33.4 keV)	Li (18.7 keV)
Np			2-22
Bi			9-16
Sm+Gd	39-50		
Cs		31-36(0.5)	
Ra			10-19
Ag			22-25
Fe			6-7 (0.01)


Play with 241Am in Heidelberg?

MMC metrology example

A New Measurement of the 60 keV Emission from Am-241 using Metallic Magnetic Calorimeters

G. B. Kim, S. T. P. Boyd, R. H. Cantor, L. A. Bernstein, S. Friedrich

September 3, 2019

Crystal spec MMC (40 eV resolution) 169Yb: 63,120.44(3) -> 241Am: 59,539.3(3)stat(3)sys

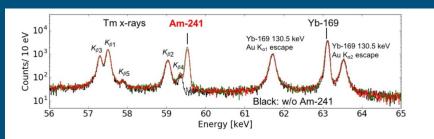
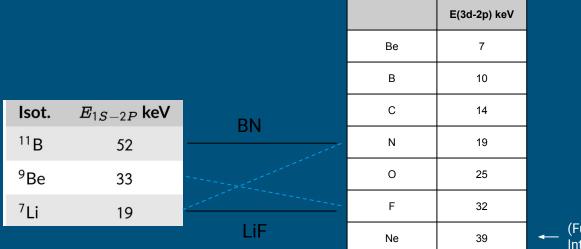
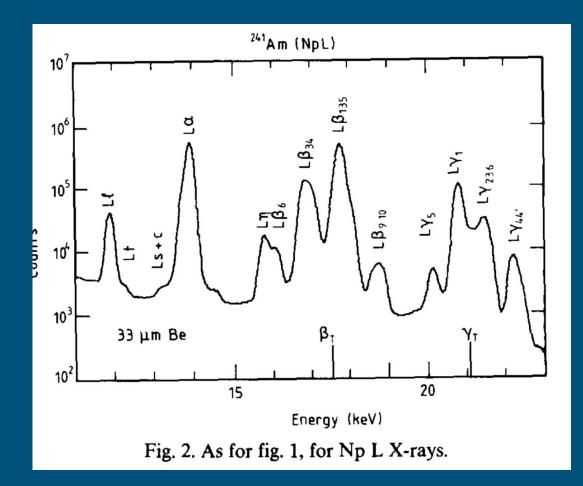
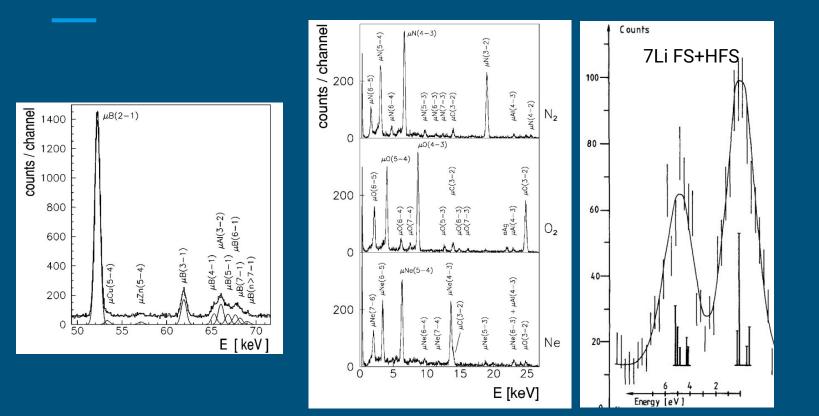



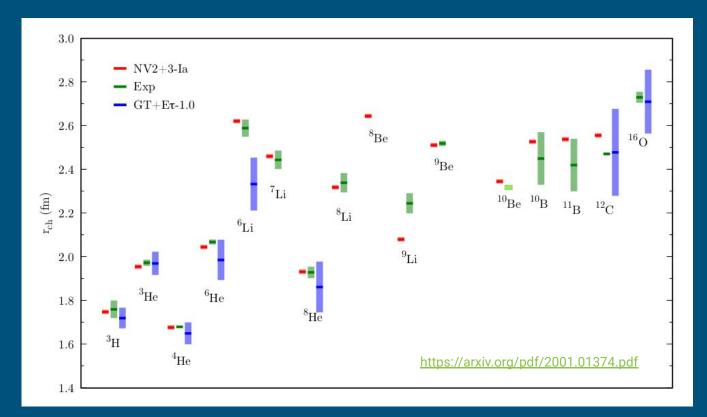
Fig. 2 Calibrated spectra from two MMC pixels. The measurement is repeated with (*red, green*) and without (*black*) the ²⁴¹Am source. (Color figure online)


Large difference from Literature value measured with solid-state detector without considering lineshape unc. -> one has to be careful with literature values!

Mixed solid targets & muonic calibration:

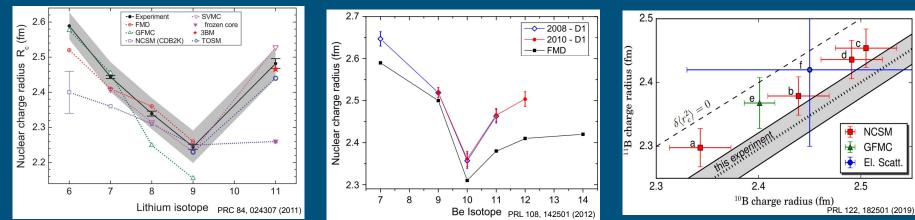


"Known" to few ppm:


(Future direction, Interesting from 0.1eV)

Some measured spectra:

Low Z <r2> and ab-initio/EFT/NN calculations



Absolute radii

Absolute radii to anchor chains of isotope shift measurements. Test nuclear models.

Isot.	E_{1S-2P} keV	$\delta_{exp} \mathbf{eV}$	$\delta_{NP} eV$	fm/keV	$\delta_r \ 10^{-3} \ \text{fm}$	Gain	Good for
¹¹ B	52	<mark>5 → 0.10</mark>	0.2 ightarrow 0.05	-6.7	21 ightarrow 0.8	26	Mir., <mark>HLI</mark> , Chain
⁹ Be	33	$10 \rightarrow 0.07$	0.1 ightarrow 0.03	-16	$\textbf{12} \rightarrow \textbf{1.3}$	9	Mir., HLI, Chain
⁷ Li	19	60 ightarrow 0.05	$\textbf{0.03} \rightarrow \textbf{0.01}$	-47	$42 \rightarrow 2.4$	17	Mir., Chain

Lithium chain, limited by reference. Can improve by factor ~20 **No more grey band** **Be chain**, limited by reference. Can improve by factor ~9 Improve ^{10,11}**B** absolute and IS By factor ~30 ~size of blue datapoint

Critical for upcoming ⁸B measurement

Up to N now accessible with No Core Shell Model with Continuum Benchmark ab initio theory

Isotope shifts:

Not limited by calibration

	ΔE(2p-1s) eV	d∆r/∆r @ 1eV	d∆r fm scat.	dr/r EFT
Li6-7	50			
B10-11	62			