Phase correction by ellipsoidal focusing mirrors for a high-resolution neutron resonance spin echo spectrometer

Tatsuro Oda

Institute for Solid State Physics, University of Tokyo

oda@issp.u-tokyo.ac.jp

Collaborators: **Hitoshi Endo** (High Energy Accelerator Research Organization), **Masahiro Hino**, **Hisao Yoshinaga** (Kyoto University), **Fumiaki Funama** (Oak Ridge National Laboratory), **Takuya Hosobata**, **Masahiro Takeda**, **Yutaka Yamagata** (RIKEN Center for Advanced Photonics)

Outline

- 1. Neutron resonance spin echo spectrometers at BL06 MLF, J-PARC
- 2. Phase correction by ellipsoidal focusing mirrors for neutron spin echo
- 3. Ellipsoidal neutron supermirror on metal substrate
- 4. Performance test
- 5. Summary

Collaborators

↑ H. Endo (IMSS*,* KEK) ↑ T. Hosobata, ↑ Y. Yamagata,
T. Takeda
(RIKEN Center for Advanced
Photonics)

↑ F. Funama (PhD at Kyoto Univ, currently postdoc at ORNL)

Japan Spallation Neutron Source at MLF, J-PARC

J-PARC at Tokai, Ibaraki, Japan

Proton beam power: 1MW (currently 0.8 MW) Frequency: 25 Hz (TOF frame 40 ms) Hg Target, Three types of moderator

F. Maekawa et al., Nucl. Instrum. Methods A 620, 159-165 (2010)

BL06 at MLF, J-PARC

Village of neutron resonance spin echo spectrometers (VIN ROSE)

Two types of resonance-type spin echo at BL06:

- NRSE (Neutron resonance spin echo) for high energy resolution ($\tau > 100$ ns)
- MIEZE (Modulation of intensity with zero effort) ⇒ Open for users

Study of spin dynamics under a high magnetic field and other extreme conditions

2. Phase correction approach using ellipsoidal focusing mirrors for neutron spin echo

Larmor phase deviation in NRSE

Divergent beam makes path deviation (phase deviation)

Phase correction (path length correction) approach by elliptic focusing mirror

M. Kitaguchi, et al., Physica B 406 (2011) 2470

Ellipsoidal supermirror

a = 1250 mm b = c = 65.4 mm

Focal length = 2a = 2500m

3. Development and production of ellipsoidal neutron supermirror on metal substrate

Difficulties in realizing ellipsoidal mirror

- Surface flatness
- Supermirror deposition
- Accuracy of ellipsoidal form

Surface flatness

Our solution: Electroless Nickel-Phosphorus plating

Phosphorus content	Structure
1-4%	Polycrystalline
5 – 8 %	(Intermediate)
9 – 12 %	Amorphous

Coatings for optical element molds

NiP amorphous plating

from https://www.nittohkogaku.co.jp/

Supermirror deposition

By courtesy of Dr. Hosobata

Overview of mirror production

By courtesy of Dr. Hosobata

Left to right:

*Al-Mg pre-machining (easily machinable metal)

> *Ni-P plating (Amorphous)

*Diamond cut (high-precision figuring)

*Polishing (remove roughness)

Precise figuring process

By courtesy of Dr. Hosobata

One chuck processing for the curved surface and datum plate

Demonstration of cutting (x 8)

NAGASE i NPIC-M200 (Positioning resolution : 10 nm)

Laser AF probe (Mitaka Khoki PFU-3) on 3D measuring instrument (Mitsutoyo Legex)

Polishing process

By courtesy of Dr. Hosobata

Slurry (alumina 300 nm \rightarrow colloidal silica 80 nm)

Cutter mark removal with alumina + Finishing with colloidal silica ⇒ Roughness < 0.2 nm (rms) in 24 hours

Supermirror ion beam sputtering deposition

By courtesy of prof. Hino

 $Q_{z} [nm^{-1}]^{-1}$ 1.2

Lot15 C

Lot15_D Lot15_U

1.5

1.0

Reflectivity 9.0 Reflectivity 9.0 Reflectivity

0.2

0.0

(b)

0.6

0.3

Target

Mount

Cage-like assemble holder

T. Hosobata et al., JPS Conf. Proc. (2018)

Datum plate in outer circumference

Easy measurement Mirror and datum plane are oriented in the same direction

Metal substrate allows a flexible design

4. Performance test

Performance test of single sector

Performance test of single sector

F. Funama, Doctor thesis, Kyoto University (2022)

NRSE signal using sector mirrors

RSF1, 2, 3, 4 were operated at f = 100 kHzThe supermirrors m-value were m =5.

36 segments to be tested

Simulation of double focusing for coma aberration correction

F. Funama, T. Tasaki M. Hino, T. Oda, H. Endo, Nucl. Instrum. Methods A, 1010 165480 (2021). Two reflections with elliptical mirrors to eliminate coma aberration

Summary

- Ellipsoidal mirrors with *m*=6.5 supermirror on Ni-P plated metal substrate
- Segmental divided design for the deposition uniformity and machining space
- Design and basic performance test have been completed and mass production has begun

Most of the materials on the mirror fabrication are by courtesy of Dr. Hosobata at RIKEN.

Thank you for your attention

