

Peter Böni

Physics Department E21 Technical University of Munich D-85747 Garching, Germany

E-mail: peter.boeni@tum.de

Physik Department E21 🛞 🙈 🎹 🛛 Technische Universität München

Workshop on Neutron Focusing Optics – NFO, PSI, 2 – 3 March 2023

Towards Small Samples and Extreme Environment

MnSi: helical ferromagnet

• *B* = 180 mT: skyrmions

tomography with polarized neutrons:

M. Schulz et al., J. Phys: Conf. Series 211, 012025 (2010)

Homogeneous regions of sample very small

Physik Department E21 🛞 🙈 🎹 🛛 Technische Universität München

- Introduction
- Transport
- Focusing Monochromators
- Focusing Optics
- Montel Mirrors
- Nested Mirror Optics
- Summary

Saturation of the Flux Density

How can we improve the signal from the sample? Moderators, neutron optics!

Physik Department E21 🛞 🙈 📶 Technische Universität München

P. Böni and W. Petry, "Neutron Science with Highly Brilliant Beams", in "Applications of Laser-Driven Particle Acceleration", edited by P. Bolton, K. Parodi, and J. Schreiber, CRC-Press Taylor & Francis, 2018, Boca Raton, FL, USA; https://www.crcpress.com/Applications-of-Laser-driven-Particle-Acceleration, edited by P. Bolton, K. Parodi, and J. Schreiber, CRC-Press Taylor & Francis, 2018, Boca Raton, FL, USA; https://www.crcpress.com/Applications-of-Laser-driven-Particle-Acceleration/Bolton-Parodi-Schreiber/p/book/9781498766418

Liouville's Theorem: Ultimate Intensity at Sample

Example:

- beam port H12 @ ILL: $\Psi = 8.10^{13} \text{ cm}^{-2} \text{s}^{-1} \text{ Å}^{-1} \text{ sterad}^{-1}$ $(\lambda = 1.2 \text{ Å})$
- typical sample: $\eta = 1, A = 1 \text{ mm}^2, \Delta \lambda = 1\%$, divergence: 1%

\rightarrow neutron intensity at sample: $I = 0.98 \cdot 10^7 \text{ s}^{-1}$

- Introduction
- Transport
- Focusing Monochromators
- Focusing Optics
- Montel Mirrors
- Nested Mirror Optics
- Summary

Transport of Neutrons: Elliptic Guides

Point to point "imaging" of source:

 $\theta_c (^0) = 0.099 \ m \ \lambda (\text{\AA}):$ \rightarrow example: $\lambda = 1 \ \text{\AA}, \ \theta_c = 0.8^0$ \rightarrow divergence at 1 \ \ \ \ L : 1.6^0

Realization: HRPD @ ISIS: Benzene C₆D₆

Gain: 10 - 100

Physik Department E21 🛞 🙈 📶 Technische Universität München

R. M. Ibberson, Nucl. Instr. and Meth. A 600, 47 (2009)

- Introduction
- Transport
- Focusing Monochromators
- Focusing Optics
- Montel Mirrors
- Nested Mirror Optics
- Summary

Doubly Focusing Monochromator at KOMPASS

Design of monochromator: 13 rows / 19 columns → gain: 247

e21

Physik Department E21 🛞 🙈 🔟 Technische Universität München

Focusing Properties of KOMPASS Monochromator

D. Gorkov, PB, M. Braden

Focusing scheme: polarizing parabolic guide combined with focusing mono

Physik Department E21 🛞 🙈 🛄 🛛 Technische Universität München

- Introduction
- Transport
- Focusing Monochromators
- Focusing Optics
- Montel Mirrors
- Nested Mirror Optics
- Summary

Small Samples: Use of Focusing Elliptic Guides

T. Adams et al., Applied Physics Letters 105, 123505 (2014); http://dx.doi.org/10.1063/1.4896295

Focusing Setup: TA Phonons in Lead

Discussion:

- large gains: $G_{TA} \cong 30 40$
- divergent beam does not spoil Q_v resolution
- can be installed at almost any beamline

($V_{sample} = 2 \times 2.5 \times 2.5 \text{ mm}^3$)

G. Brandl et al., Applied Physics Letters 107, 253505 (2015); http://dx.doi.org/10.1063/1.4938503

Gain: $G_{TA} \cong 30 - 40$

Improve Homogeneity of Beam (Divergence)

G. Ice et al., J. Appl. Cryst. 42, 1004 (2009) (SNAP @ SNS)

Physik Department E21 🛞 🙈 🎹 Technische Universität München

http://x-ray-optics.eu/index.php@option=com_content@view=article&i...

- Introduction
- Transport
- Focusing Monochromators
- Focusing Optics
- Montel Mirrors
- Nested Mirror Optics
- Summary

SINQ (PSI): Selene at AMOR

J. Stahn et al, Eur. Phys. J. Appl. Phys. 58, 11001 (2012)

Selene Combined with + in-situ Coating Technology

- Introduction
- Transport
- Focusing Monochromators
- Focusing Optics
- Montel Mirrors
- Nested Mirror Optics
- Summary

Blurring of Beams by Elliptic Guides

Physik Department E21 🛞 🙈 🎹 Technische Universität München

Christoph Herb, Oliver Zimmer, Robert Georgii, and Peter Böni, Nucl. Instrum. Meth. A 1040, 1671564 (1-18) 2022.

Footprint of Guides: Extraction of Neutrons

Footprint:

$$F_{mod} > h + 2L_{MG}\theta_c = h + 2L_{MG}mc\lambda \qquad (c = 0.00173 \text{ rad/Å})$$

Example (ESS):

- *h* = 30 mm
- $L_{MG} = 2000 \text{ mm}$
- *m* = 4
- $\lambda = 3 \text{ Å}$

 \rightarrow F_{MOD} > 30 mm + 83 mm = 113 mm large compared with high-brill. moderators

move entrance of guide close to moderator

For m = 2: footprint is still 73 mm.

Nested Mirror Optics

- B. Khaykovich, 03.-Mar-2023, 16:30 – 17:00

Technical Realization of NMOs

Imaging of a 1D Grid (BOA, Matteo Busi)

Christoph Herb et al., Nucl. Instrum. Meth. A 1040, 1671564 (1-18) 2022.

Application: Transport of Neutrons Using NMOs

Christoph Herb et al., Nucl. Instrum. Meth. A 1040, 1671564 (1-18) 2022.

Application: Focusing and Selection of Phase Space

horizontal position (mm)

horizontal position (mm)

Adjust Horizontal Divergence of Beam at Sample

focusing guide

nested mirror optic

NMOs allow definition of the phase space at the sample position.

Physik Department E21 🛞 🙈 🎹 Technische Universität München

Phase Space: Elliptic vs. NMO

Physik Department E21 🛞 🙈 🎹 🛛 Technische Universität München

Christoph Herb et al., Nucl. Instrum. Meth. A 1040, 1671564 (1-18) 2022.

Summary

Developments in neutron beam optics:

Advantages of nested mirror optics :

- compact / simple alignment (similarly as a lens in visible light optics)
- selection of phase space far away from sample
- no chromatic aberration / low sensitivity to gravitation
- excellent sample-/system size ratio (compare Selene)
- low background
- reduction of irradiation damage (far away from moderator)
- design of beam lines is simplified

Acknowledgment

- Christoph Herb (TUM)
- Robert Georgii (TUM)
- Christian Schanzer (SNAG)
- Michael Schneider (SNAG)
- Jochen Stahn (PSI)
- Uwe Filges (PSI)
- Matteo Busi (PSI)
- Oliver Zimmer (ILL)

TECHNISCHE UNIVERSITÄT

MÜNCHEN

