

A McStas Simulation Framework for Nested Mirror Optics Method and Applications

Workshop on Neutron Focusing Optics – NFO

Richard Wagner, ILL - 02.03.2023

PSI, Villigen

Outline

- Nested Mirror Optics
- McStas Components
- Applications
 - NNBAR
 - In-Beam UCN Source

Nested Mirror Optics - NMO

- Elliptical guide: possible architecture to transport neutrons diverging from a source to a detector (sample)
- Elliptical shaped mirror has the property to reflect a beam that emanates from one of its focal points directly to the other one
- The layers of several guides can be nested to build up a spatial tight optical component
 - \rightarrow Focusing reflector in (compact) nested arrangement
- Elliptical mirrors in planar or cylindrical arrangement possible
- Verify & quantify performance of these optical systems in McStas Simulations

O.Zimmer, arXiv:1611.07353 Journal of Neutron Research 20 (2018) 91-98

Nested optic Construction principle

McStas component

- Guide_anyshape.instr
- Constitutes a reflecting surface of arbitrary shape defined by an OFF-File
- Reflectivity parametrized by R_0, Q_c, α, W, m

Table 1: Input parameters for the Guide_anyshape component

Parameter	Description
geometry	name of the OFF-file that defines the geometry of the optic
m	m-value of the optics material (zero is completely absorbing)

HighNess OFF(object file format)-Files

1	OFF
2	<pre># A cube of size 1x1x1 centred</pre>
3	8 6 0
4	-0.500000 -0.500000 0.500000
5	0.500000 -0.50000 0.500000
6	-0.500000 0.500000 0.500000
7	0.500000 0.500000 0.500000
8	-0.500000 0.500000 -0.500000
9	0.500000 0.50000 -0.500000
10	-0.500000 -0.500000 -0.500000
11	0.500000 -0.500000 -0.500000
12	4 0 1 3 2
13	4 2 3 5 4
14	4 4 5 7 6
15	4 6 7 1 0
16	4 1 7 5 3
17	4 6 0 2 4
10	

Example of an OFF-File describing a cube of side length one and its representation

NMO - component creation library

 Collection of Python functions for OFF File Generation of Nested Mirror Optics

 Example 	Table 5: Input parameters for the createToroidalNestedOFFwArray() function			
	Parameter	Description		
	L	distance between focal points of the ellipses		
	b_array	array containing the minor axes of the nested ellipses		Ť
	z_start	starting point of the optic, relative to the focal point		
	I	length of the optic	Ey	
	nb_segments	number of segments by which the ellipses are approximated		
	nb_segments_T	number of segments the circumferences of		
		the toroidal sections are approximated with		
	filename	name of the generated OFF-file		
	opticHalfWidth	limit for extent of the optic.		
		The area the optic can occupy is between \pm <code>opticHalfWidth</code>		
	bBoundingBox	outer level is surrounded by a bounding box (true/false)		

Example NMOs: Elliptical Guides

HighNess Example NMOs: Wolter optics (type I)

Fig. 1. Schematic representation of the ellipsoid-hyperboloid mirror. A source at one focus of the ellipsoid (F_3) is imaged at the focus of the hyperboloid (F_2) after two reflections.

From: R. C. Chase and J. K. Silk, Appl. Opt. 14, 2096-2098 (1975)

- Hyperboloid and ellipsoid segment
- Design fulfills the Abbé sine condition in good approximation
- Produce sharp and aberration free images.

 Library extended to create Wolter NMOs

Simulation process

Application Example NNBAR Experiment at ESS

Find the optimum optic by varying parameters (e.g. starting point, # of nested levels, ...)

Example: Simulations for a 1m long nested Reflector

Collected results for different reflector systems

1000

HighNess Off-Axis magnification for an elliptical reflector

NNBAR: cylindrical, 10m, 4 levels (5MW) Start of reflector: 10m, 15m, 20m

Position of optic has to fulfill trade off between focusing and covering of solid angle

Application Example In-Beam UCN Source ESS

Ultra - cold neutron UCN production in superfluid Helium

Application Example In-Beam UCN Source ESS

- Need a neutron delivery system with high brilliance transfer from moderator to UCN source, with largest technically possible solid angle
- Neutron imaging from the moderator to the UCN source via NMOs has been identified as possible solution

Intensity map (simulated) at the ESS LD2 moderator surface of neutrons with WL near 9 Å

In-beam superfluid-helium ultracold neutron source for the ESS

Oliver Zimmer^{a,*}, Thierry Bigault^a, Skyler Degenkolb^b, Christoph Herb^c, Thomas Neulinger^a, Nicola Rizzi^d, Valentina Santoro^d, Alan Takibayev^d, Richard Wagner^a and Luca Zanini^d

Journal of Neutron Research 24 (2022) 95–110 95 DOI 10.3233/JNR-220045

Application Example In-Beam UCN Source ESS

NMO at 15m: length 0.5m, 119 levels

Distance Source-Detector 30m

Production Rate

HighNESS is funded by the European Union Framework Programme for Research and Innovation Horizon 2020, under grant agreement 951782

"...at the top of the range of other current projects." Zimmer et al., JNR 2022

off-axis "point" source

Detector at 30m

Detector at 30m

- Support nested layers with different m-values:
 - → Guide_anyshape_r.instr
- Asymmetric NMOs: i.e. different half-axis arrays for upper and lower half
- Nested parabolic NMOs (stand-alone or as part of Wolter optic)
- Take into account losses:
 - Thickness of mirrors
 - Waviness, roughness of mirrors
 - Off-specular reflection

Thank you for your attention!

Credits: Jonathan Collin, Nyia Petkova, Gautier Daviau, Alexandra Karabasova, Nicola Rizzi, Luca Zanini, Oliver Zimmer

