WP1

- From Diagrams to Amplitudes :: WTB
- From Amplitudes to Cross sections :: TE
- From Cross sections to Event :: YU

• Dispersive Approach to Massive two-loop Amplitudes :: AG

From Feynman diagrams to Amplitudes

William J. Torres Bobadilla Max-Planck-Institut Für Physik

5th Workstop / Thinkstart: Radiative corrections and Monte Carlo tools for Strong 2020 April 5 — 9, 2029 Zurich, Switzerland

William J. Torres Bobadilla

[McMule framework]

4

Outline

- O Feynman integrals
- electron-muon scattering w/ $m_e^2 = 0$
- O Perspectives on electron-muon scattering w/ $m_e^2 \neq 0$
- Summary & Future directions

Multi-loop Feynman integrals

In loop calculations, one finds

$$J_{N}^{(L),D}(1,...,n;n+1,...,m) = \int \prod_{i=1}^{L} \frac{d^{D}\ell_{i}}{\iota \pi^{D/2}} \frac{\prod_{k=n+1}^{m} D_{k}^{-\nu_{k}}}{\prod_{j=1}^{n} D_{j}^{\nu_{j}}}$$
$$D_{i} = q_{i}^{2} - m_{i}^{2} + \iota 0$$

Second Complexity easily increases:

known at all orders

 $m^2 \neq 0$

elliptic integrals

DEQ :: Feynman integrals are not independent (IBP relations)

$$\partial_x \overrightarrow{J}(x) = A_i(x,\epsilon) \overrightarrow{J}(x)$$

Several methods (and tools) to analytically or numerically integrate them

Analytic evaluations

[Mandal, Mastrolia, Ronca, WJT *et al* (2021)] [Mandal, Mastrolia, Ronca, WJT (2022)]

 $\mathbf{v} e^+ e^- \rightarrow \mu^+ \mu^- \& q\bar{q} \rightarrow t\bar{t}$ at two loops

$$\mathcal{A}(\alpha) = 4\pi\alpha \left[\mathcal{A}^{(0)} + \left(\frac{\alpha}{\pi}\right) \mathcal{A}^{(1)} + \left(\frac{\alpha}{\pi}\right)^2 \mathcal{A}^{(2)} + \mathcal{O}\left(\alpha^3\right) \right]$$

O(100) MIs

$$s = (p_1 + p_2)^2$$
, $t = (p_2 - p_3)^2$,
 $u = (p_1 - p_3)^2$, $s + t + u = 2M^2$.

Integrand/integral reductions

$$\mathcal{M}^{(2)}\left(e^{+}e^{-} \to \mu^{+}\mu^{-}\right) = \sum_{k} c_{k}\left(s, t, m^{2}, \epsilon\right) I_{k}^{(2)}\left(s, t, m^{2}, \epsilon\right)$$

$$O(10000) \text{ monomials}$$

William J. Torres Bobadilla

7

electron-muon scattering $w/m_e^2 \neq 0$

What is new & problematic?

Numerical evaluation of Feynman integrals

- We are used to
 - Sector Decomposition -> PySecDec, Fiesta
 - Auxiliary Mass Flow :: DEQ in $x \sim \iota 0$
 - Series expansions :: solve DEQ along path —> DiffExp, SeaSyde
- Insights from tropical geometry —> FeynTrop

Numerical evaluation of Feynman integrals

- We are used to
 - Sector Decomposition -> PySecDec, Fiesta
 - Auxiliary Mass Flow :: DEQ in $x \sim \iota 0$
 - Series expansions :: solve DEQ along path —> DiffExp, SeaSyde

Insights from tropical geometry —> FeynTrop

Started integrating using 16 threads and $N = 1e+07$ points. Finished in 8.98043 seconds = 0.00249456 hours.							
eps^0: [1 eps^1: [eps^2: [eps^3: [2 eps^4: [8	.000 +/- 3.98 +/- 8.70 +/- 1.519 +/- 9.751 +/-	0.019] 0.29] 2.41] 14.125] 66.827]	+ :	i * i * i * i *	[0.974 [6.57 [20.04 [30.395 [-16.737	+/- +/- +/- +/-	0.016] 0.28] 2.54] 15.982] 75.607]
Started integrating using 16 threads and N = 1e+08 points. Finished in 89.3534 seconds = 0.0248204 hours.							
eps^0: [0	.9879 +/-	- 0.0089]	+	i *	[1.0054	+/-	0.0094]
eps^1: [3.78 +/-	- 0.17]	+	i *	[7.17	+/-	0.17]
eps^2: [6.49 +/-	- 1.68]	+	i *	[25.54	+/-	1.49]
eps^3: [3.858 +/-	- 11.402]	+	i *	[63.38	+/-	8.82]
eps^4: [-	14.775 +/-	- 58.255]	+	i *	[127.640	+/-	38.927]

Recap

🛠 Straightforward generation of integrand from Feynman diagrams

Aida

☆ Integration-by-parts identities :: out of the box

FiniteFlow

Kira & FireFly

🔆 Explore use of new tools to evaluate Feynman integrals

FeynTrop?

Open questions/directions

• Provide me with loop integrands to play around

Numerically or analytically?

• Keep in mind $e+e- \rightarrow y^* y^*$

+ non-planar

Result for massless electrons

[Henn, Melnikov, Smirnov (2014)] [Caola, Henn, Melnikov, Smirnov (2014)] 11