

Radiative corrections: 3π channel

Bastian Kubis

HISKP (Theorie) & BCTP Universität Bonn, Germany

Radiative corrections and Monte Carlo tools for Strong 2020 University of Zurich, 5/6/2023

Hoferichter, Hoid, BK, Schuh, in progress

Motivation: radiative corrections for $\pi^+\pi^-\pi^0$

• second largest exclusive channel next to $\pi^+\pi^-$:

Channel	KNT18	DHMZ17	Difference
Data based channels ($\sqrt{s} \leq 1.8$ GeV)			
$\pi^+\pi^-$	503.74 ± 1.96	506.70 ± 2.58	-2.96
$\pi^+\pi^-\pi^0$	47.70 ± 0.89	46.20 ± 1.45	1.50
$\pi^+\pi^-\pi^+\pi^-$	13.99 ± 0.19	13.68 ± 0.31	0.31
$\pi^+\pi^-\pi^0\pi^0$	18.15 ± 0.74	18.03 ± 0.54	0.12
K^+K^-	23.00 ± 0.22	23.06 ± 0.41	-0.06
$K_S^0 K_L^0$	13.04 ± 0.19	12.82 ± 0.24	0.22
Total	693.3 ± 2.5	693.1 ± 3.4	0.2

A. Keshavarzi, Mainz 2018

 \longrightarrow cross-checked dispersively

Hoferichter, Hoid, BK 2019

• (infrared-finite) $\pi^+\pi^-\gamma$ contribution:

$$a_{\mu}^{\pi^+\pi^-\gamma}|_{\leq 0.95\,{
m GeV}} = 4.34(4) imes 10^{-10}$$
 Moussallam 2013

 \longrightarrow expect $a_{\mu}^{\pi^{+}\pi^{-}\pi^{0}\gamma} \sim 0.4 \times 10^{-10}$

The anomalous process $\gamma^* ightarrow 3\pi$

•
$$\gamma^*(q) \rightarrow \pi^+ \pi^- \pi^0$$
: odd intrinsic parity

 $\langle 0|j_{\mu}(0)|\pi^{+}(p_{+})\pi^{-}(p_{-})\pi^{0}(p_{0})\rangle = -\epsilon_{\mu\nu\rho\sigma} p_{+}^{\nu}p_{-}^{\rho}p_{0}^{\sigma} \mathcal{F}(s,t,u;q^{2})$

s,t,u: pion-pion invariant masses, $s+t+u=q^2+3M_\pi^2$

normalisation fixed from Wess–Zumino–Witten anomaly:

$$\mathcal{F}(0,0,0;0) = F_{3\pi} = \frac{1}{4\pi^2 F_{\pi}^3}$$

 \longrightarrow not part of scalar QED

coupling of negative mass dimension → nonrenormalisable!

Radiative corrections $\gamma\pi^{\pm} ightarrow \pi^{\pm} \pi^{0}$

 can be calculated in chiral perturbation theory (with virtual photons):

Ametller, Knecht, Talavera 2001

 \longrightarrow photon *t*-channel pole kinematically enhanced; irrelevant for $\gamma^* \rightarrow 3\pi$ kinematics

 \longrightarrow requires (unknown) counterterms

Ananthanarayan, Moussallam 2002

Radiative corrections $\gamma\pi^{\pm} ightarrow \pi^{\pm} \pi^{0}$

 can be calculated in chiral perturbation theory (with virtual photons):

Ametller, Knecht, Talavera 2001

 \rightarrow photon *t*-channel pole kinematically enhanced; irrelevant for $\gamma^* \rightarrow 3\pi$ kinematics

 \longrightarrow requires (unknown) counterterms

Ananthanarayan, Moussallam 2002

• misses dominating resonance dynamics away from threshold:

Radiative corrections $\gamma\pi^{\pm} ightarrow \pi^{\pm} \pi^{0}$

 can be calculated in chiral perturbation theory (with virtual photons):

Ametller, Knecht, Talavera 2001

 \rightarrow photon *t*-channel pole kinematically enhanced; irrelevant for $\gamma^* \rightarrow 3\pi$ kinematics

 \longrightarrow requires (unknown) counterterms

Ananthanarayan, Moussallam 2002

• misses dominating resonance dynamics away from threshold:

 \longrightarrow radiative corrections will not easily factorise

$2\pi\gamma$: infrared enhanced contributions

• decomposition Born (incl. virtual \rightarrow IR-finite $\eta_{2\pi}$!) + rest:

$$\begin{aligned} a_{\mu}^{\pi^{+}\pi^{-}\gamma} &= a_{\mu}^{\text{Born}} + \hat{a}_{\mu}^{\pi^{+}\pi^{-}\gamma} \\ a_{\mu}^{\text{Born}}|_{\leq 0.95 \text{ GeV}} &= 4.19 \times 10^{-10} \\ \hat{a}_{\mu}^{\pi^{+}\pi^{-}\gamma}|_{\leq 0.95 \text{ GeV}} &= 0.15(4) \times 10^{-10} \end{aligned}$$

 \rightarrow "infrared enhanced" Born terms dominate by far!

$2\pi\gamma$: infrared enhanced contributions

• decomposition Born (incl. virtual \rightarrow IR-finite $\eta_{2\pi}$!) + rest:

$$\begin{aligned} a_{\mu}^{\pi^{+}\pi^{-}\gamma} &= a_{\mu}^{\text{Born}} + \hat{a}_{\mu}^{\pi^{+}\pi^{-}\gamma} \\ a_{\mu}^{\text{Born}}|_{\leq 0.95 \text{ GeV}} &= 4.19 \times 10^{-10} \\ \hat{a}_{\mu}^{\pi^{+}\pi^{-}\gamma}|_{\leq 0.95 \text{ GeV}} &= 0.15(4) \times 10^{-10} \end{aligned}$$

 \longrightarrow "infrared enhanced" Born terms dominate by far!

 \rightarrow assume this hierarchy for $3\pi\gamma$, too!

Amplitude representation $\gamma^* ightarrow 3\pi$

 $\langle 0|j_{\mu}(0)|\pi^{+}(p_{+})\pi^{-}(p_{-})\pi^{0}(p_{0})\rangle = -\epsilon_{\mu\nu\rho\sigma} p_{+}^{\nu}p_{-}^{\rho}p_{0}^{\sigma} \mathcal{F}(s,t,u;q^{2})$

• "reconstruction theorem": neglect discontinuities in F-waves... \rightarrow decomposition into "single-variable" functions (at fixed q^2)

$$\mathcal{F}(s,t,u;q^2) = \mathcal{F}(s,q^2) + \mathcal{F}(t,q^2) + \mathcal{F}(u,q^2)$$

• (s-channel) P-wave projection: $f_1(s,q^2) = \mathcal{F}(s,q^2) + \hat{\mathcal{F}}(s,q^2)$ $\hat{\mathcal{F}}(s,q^2)$: contribution from crossed channels $\mathcal{F}(t/u,q^2)$ \rightarrow dispersive Khuri–Treiman representation of $\mathcal{F}(s,q^2)$ + parameterisation of q^2 dependence fitted to data Hoferichter, Hoid, BK 2019 + ... [cf. spares]

Amplitude representation $\gamma^* ightarrow 3\pi$

 $\langle 0|j_{\mu}(0)|\pi^{+}(p_{+})\pi^{-}(p_{-})\pi^{0}(p_{0})\rangle = -\epsilon_{\mu\nu\rho\sigma} p_{+}^{\nu}p_{-}^{\rho}p_{0}^{\sigma} \mathcal{F}(s,t,u;q^{2})$

• "reconstruction theorem": neglect discontinuities in F-waves... \rightarrow decomposition into "single-variable" functions (at fixed q^2)

$$\mathcal{F}(s,t,u;q^2) = \mathcal{F}(s,q^2) + \mathcal{F}(t,q^2) + \mathcal{F}(u,q^2)$$

- (s-channel) P-wave projection: $f_1(s,q^2) = \mathcal{F}(s,q^2) + \hat{\mathcal{F}}(s,q^2)$ $\hat{\mathcal{F}}(s,q^2)$: contribution from crossed channels $\mathcal{F}(t/u,q^2)$ \rightarrow dispersive Khuri–Treiman representation of $\mathcal{F}(s,q^2)$ + parameterisation of q^2 dependence fitted to data Hoferichter, Hoid, BK 2019 + ... [cf. spares]
- strategy: transfer $\eta_{2\pi}(q^2)$ from $\gamma^* \to \pi^+ \pi^-$

to $\eta_{2\pi}(s)$ in $\gamma^*\pi^0 \to \pi^+\pi^-$ P-wave

• subtlety: partial waves diverge at $s_{\text{PT}} = (\sqrt{q^2} - M_{\pi})^2$

 \longrightarrow need to apply fudge factor to F-waves and higher

Radiative corrections in 3π

• fudge factor option 1: constant correction for $f_3(s,q^2) + \ldots$

$$\sigma_{3\pi(\gamma)}(q^2) \propto \int_{s_-}^{s_+} ds \int_{t_-}^{t_+} dt \, K(s,t;q^2) \left| \left[\underbrace{\mathcal{F}(s,q^2) + \hat{\mathcal{F}}(s,q^2)}_{f_1(s,q^2)} \right] \sqrt{1 + \frac{\alpha}{\pi} \eta_{2\pi}(s)} \right|^2 \\ + \left[\underbrace{\mathcal{F}(t,q^2) + \mathcal{F}(u,q^2) - \hat{\mathcal{F}}(s,q^2)}_{f_3(s,q^2) + \dots} \right] \sqrt{1 + \frac{\alpha}{\pi} \eta_{2\pi}(s_{\mathsf{PT}})} \right|^2$$

• fudge factor option 2: same factor for complete amplitude

$$\sigma_{3\pi(\gamma)}(q^2) \propto \int_{s_-}^{s_+} \mathrm{d}s \int_{t_-}^{t_+} \mathrm{d}t \, K(s,t;q^2) \left| \mathcal{F}(s,t,u,q^2) \right|^2 \left(1 + \frac{\alpha}{\pi} \eta_{2\pi}(s) \right)$$

 \longrightarrow difference is negligible

• define $\eta_{3\pi}(q^2)$ from ratio

$$\frac{\sigma_{3\pi(\gamma)}(q^2)}{\sigma_{3\pi}^0(q^2)} \equiv 1 + \frac{\alpha}{\pi} \eta_{3\pi}(q^2)$$

Radiative corrections in 3π : results

- near-threshold behaviour of $\eta_{3\pi}(q^2)$ cross-checked by analytic nonrelativistic expansion
- comparison to (shifted) $\eta_{2\pi}(q^2)$: nontrivial Dalitz plot effects

Summary / Result

- radiative corrections to $\gamma^* \to 3\pi$ not calculable in scalar QED
- ChPT insufficient: resonance-rich in relevant energy range
- infrared enhanced corr.: $\eta_{2\pi}$ applied to $\pi^+\pi^-$ invariant mass $\eta_{3\pi}$ correction from numerical Dalitz plot integration
- estimate $a_{\mu}^{3\pi\gamma}$:

$$\begin{aligned} a_{\mu}^{2\pi}|_{\leq 1\,\mathrm{GeV}} &= 495.0(2.6) \times 10^{-10} & a_{\mu}^{3\pi}|_{\leq 1.8\,\mathrm{GeV}} = 46.2(8) \times 10^{-10} \\ a_{\mu}^{2\pi\gamma}|_{\leq 0.95\,\mathrm{GeV}} &= 4.34(4) \times 10^{-10} & a_{\mu}^{3\pi\gamma}|_{\leq 1.8\,\mathrm{GeV}} = 0.47(1) \times 10^{-10} \end{aligned}$$

Colangelo, Hoferichter, Stoffer 2018; Hoferichter, Hoid, BK 2019 Moussallam 2013; Schuh 2023

 \longrightarrow expected effect in the 1% range

- contributes to broader analysis of isospin breaking in 3π channel $$_{\rm in\ progress}$$

Unitarity relation for $\mathcal{F}(s, q^2)$:

$$\operatorname{disc} \mathcal{F}(s,q^2) = 2i\left\{\underbrace{\mathcal{F}(s,q^2)}_{\mathcal{F}(s,q^2)} + \underbrace{\hat{\mathcal{F}}(s,q^2)}_{\mathcal{F}(s,q^2)}\right\} \times \theta(s - 4M_{\pi}^2) \times \sin \,\delta_1^1(s) \, e^{-i\delta_1^1(s)}$$

right-hand cut left-hand cut

Unitarity relation for $\mathcal{F}(s,q^2)$:

disc $\mathcal{F}(s, q^2) = 2i \{ \underbrace{\mathcal{F}(s, q^2)}_{\text{right-hand cut}} \}$

$$\} \times \theta(s - 4 M_{\pi}^2) \times \sin \delta_1^1(s) e^{-i\delta_1^1(s)}$$

right-hand cut only —> Omnès problem

$$\mathcal{F}(s,q^2) = a(q^2) \,\Omega(s) \,, \qquad \Omega(s) = \exp\left\{\frac{s}{\pi} \int_{4M_\pi^2}^\infty \frac{ds'}{s'} \frac{\delta_1^1(s')}{s'-s}\right\}$$

 \longrightarrow amplitude given in terms of pion vector form factor

Unitarity relation for $\mathcal{F}(s,q^2)$:

• inhomogeneities $\hat{\mathcal{F}}(s,q^2)$: angular averages over the $\mathcal{F}(t)$, $\mathcal{F}(u)$

$$\mathcal{F}(s,q^2) = \mathbf{a}(q^2) \,\Omega(s) \left\{ 1 + \frac{s^2}{\pi} \int_{4M_\pi^2}^{\infty} \frac{ds'}{s'^2} \frac{\sin \delta_1^1(s') \hat{\mathcal{F}}(s',q^2)}{|\Omega(s')|(s'-s)|} \right\}$$
$$\hat{\mathcal{F}}(s,q^2) = \frac{3}{2} \int_{-1}^{1} dz \,(1-z^2) \mathcal{F}(t(s,z),q^2)$$

Unitarity relation for $\mathcal{F}(s,q^2)$:

• inhomogeneities $\hat{\mathcal{F}}(s,q^2)$: angular averages over the $\mathcal{F}(t)$, $\mathcal{F}(u)$

$$\mathcal{F}(s,q^2) = \mathbf{a}(q^2) \,\Omega(s) \left\{ 1 + \frac{s^2}{\pi} \int_{4M_\pi^2}^{\infty} \frac{ds'}{s'^2} \frac{\sin \delta_1^1(s') \hat{\mathcal{F}}(s',q^2)}{|\Omega(s')|(s'-s)|} \right\}$$
$$\hat{\mathcal{F}}(s,q^2) = \frac{3}{2} \int_{-1}^{1} dz \,(1-z^2) \mathcal{F}(t(s,z),q^2)$$

• crossed-channel scatt. between s-, t-, u-channel (left-hand cuts)

- parameterisation of subtraction function $a(q^2)$
 - \longrightarrow to be fitted to $e^+e^- \rightarrow 3\pi$ cross section data:

$$a(q^2) = \frac{F_{3\pi}}{3} + \frac{q^2}{\pi} \int_{\text{thr}}^{\infty} ds' \frac{\text{Im}\,\mathcal{A}(s')}{s'(s'-q^2)} + C_n(q^2)$$

• $\mathcal{A}(q^2)$ includes resonance poles:

$$\mathcal{A}(q^2) = \sum_{V} \frac{c_V}{M_V^2 - q^2 - i\sqrt{q^2}\Gamma_V(q^2)} \qquad V = \omega, \phi, \omega', \omega''$$
$$c_V \text{ real}$$

• conformal polynomial (inelasticities); S-wave cusp eliminated:

$$C_n(q^2) = \sum_{i=1}^n c_i \left(z \left(q^2 \right)^i - z(0)^i \right), \qquad z \left(q^2 \right) = \frac{\sqrt{s_{\text{inel}} - s_1} - \sqrt{s_{\text{inel}} - q^2}}{\sqrt{s_{\text{inel}} - s_1} + \sqrt{s_{\text{inel}} - q^2}}$$

• exact implementation of $\gamma^* \rightarrow 3\pi$ anomaly:

$$\frac{F_{3\pi}}{3} = \frac{1}{\pi} \int_{s_{\text{thr}}}^{\infty} ds' \frac{\operatorname{Im} a(s')}{s'}$$

Fit results $e^+e^- ightarrow 3\pi$ data up to 1.8 GeV

- black / gray bands represent fit and total uncertainties
- vacuum polarisation removed from the cross section