Dispersive Approach to Massive Two-Loop Amplitudes

Andrea Gurgone
$5^{\text {th }}$ Workstop / Thinkstart:
Radiative corrections and Monte Carlo tools for Strong 2020

- Goal: Evaluation of two-loop box amplitudes with full mass dependency.
- We need a compromise between an (insane) analytical calculation and an (inefficient) complete numerical computation.

- General idea: Reduce one of the two sub-loops in a self-energy by introducing two Feynman parameters, so that the corresponding two-point function can be re-written in a propagator-like form by using a dispersion relation.
- This leads to a standard one-loop amplitude with a further 3-dimensional integral (2 Feynman parameters +1 dispersion parameter) to be evaluated numerically.
- Currently considered for $\mu e \rightarrow \mu e$ at NNLO in MESMER, but it can be also applied to $e e \rightarrow e e, e e \rightarrow \mu \mu$ and $e e \rightarrow \gamma \gamma$.
- No numerical result yet, but let's explain how the method works.

1. M. Awramik, M. Czakon and A. Freitas, Electroweak two-loop corrections to the effective weak mixing angle, JHEP 11 (2006) 048 [hep-ph/0608099]
2. Q. Song and A. Freitas, On the evaluation of two-loop electroweak box diagrams for $e^{+} e^{-} \rightarrow H Z$ production, JHEP 04 (2021) 179 [2101.00308]
3. A. Freitas and Q. Song, Two-Loop Electroweak Corrections with Fermion Loops to $e^{+} e^{-} \rightarrow Z H$, Phys. Rev. Lett. 130 (2023) 031801 [2209.07612]
4. A. Aleksejevs, Dispersion Approach in Two-Loop Calculations, Phys. Rev. D 98 (2018) 036021 [1804.08914]
5. A. Aleksejevs, Crossed Topology in Two-Loop Dispersive Approach, [1809.05592]

Benchmark diagram

In this talk: scalar two-box diagram $p_{1} p_{2} \rightarrow k_{1} k_{2}$ with all masses equal to m.

$$
\begin{aligned}
\mathcal{I} & =\int d^{4} q_{1} d^{4} q_{2} \frac{1}{q_{1}^{2}-m^{2}+i \epsilon} \frac{1}{\left(q_{1}+p_{1}\right)^{2}-m^{2}+i \epsilon} \frac{1}{\left(q_{1}+p_{1}+p_{2}\right)^{2}-m^{2}+i \epsilon} \\
& \times \frac{1}{\left(q_{1}-q_{2}\right)^{2}-m^{2}+i \epsilon} \frac{1}{q_{2}^{2}-m^{2}+i \epsilon} \frac{1}{\left(q_{2}+k_{1}\right)^{2}-m^{2}+i \epsilon} \frac{1}{\left(q_{2}+k_{1}+k_{2}\right)^{2}-m^{2}+i \epsilon}
\end{aligned}
$$

We apply the Feynman parametrisation to the three propagators depending on q_{2} but not q_{1} to reduce the q_{2} sub-loop into a self-energy sub-diagram $\longrightarrow x, y$ parameters:

$$
\begin{aligned}
& \text { Auxiliary momentum and mass: } \\
& k^{\prime} \equiv(1-x) k_{1}+y k_{2} \\
& m^{\prime 2} \equiv m^{2}-x y\left(k_{1}+k_{2}\right)^{2}-(1-x-y)\left(x k_{1}^{2}+y k_{2}^{2}\right) \\
& \frac{1}{q_{2}^{2}-m^{2}+i \epsilon} \frac{1}{\left(q_{2}+k_{1}\right)^{2}-m^{2}+i \epsilon} \frac{1}{\left(q_{2}+k_{1}+k_{2}\right)^{2}-m^{2}+i \epsilon}=\int_{0}^{1} d x \int_{0}^{1-x} d y \frac{2}{\left[\left(q_{2}+k^{\prime}\right)^{2}-m^{\prime 2}+i \epsilon\right]^{3}}
\end{aligned}
$$

We can now write the q_{2} sub-loop in terms of the (derivative of the) two-point scalar function B_{0} :

$$
\begin{aligned}
& \text { External effective momenta: } \\
& k_{1}^{\prime} \equiv x k_{1}+(1-y) k_{2} \\
& k_{2}^{\prime} \equiv(1-x) k_{1}+y k_{2} \\
& \mathcal{I}_{2}=\int d x d y \int d^{4} q_{2} \frac{1}{\left(q_{1}-q_{2}\right)^{2}-m^{2}+i \epsilon} \frac{2}{\left[\left(q_{2}+k^{\prime}\right)^{2}-m^{\prime 2}+i \epsilon\right]^{3}} \\
& =\int d x d y \frac{\partial^{2}}{\partial\left(m^{\prime 2}\right)^{2}} B_{0}\left(\left(q_{1}+k^{\prime}\right)^{2}, m^{\prime 2}, m^{2}\right)
\end{aligned}
$$

Dispersion relation for $m^{\prime 2}>0$

If $m^{\prime 2} \in \mathbb{R}$ we can write the dispersion relation for B_{0} using the usual pac-man contour:

$$
\begin{aligned}
& B_{0}\left(\left(q_{1}+k^{\prime}\right)^{2} ; m^{\prime 2}, m^{2}\right)= \\
& =\frac{1}{2 \pi i} \oint_{\Theta} d \sigma \frac{B_{0}\left(\sigma ; m^{\prime 2}, m^{2}\right)}{\sigma-\left(q_{1}+k^{\prime}\right)^{2}-i \epsilon}= \\
& =\frac{1}{2 \pi i} \int_{\left(m_{1}+m_{2}\right)^{2}}^{+\infty} d \sigma \frac{\operatorname{Disc} B_{0}\left(\sigma ; m^{\prime 2}, m^{2}\right)}{\sigma-\left(q_{1}+k^{\prime}\right)^{2}-i \epsilon}
\end{aligned}
$$

$\operatorname{Disc} B_{0}(\sigma)=\lim _{\eta \rightarrow 0}\left[B_{0}(\sigma+i \eta)-B_{0}(\sigma-i \eta)\right]=2 i \operatorname{Im} B_{0}(\sigma) \equiv 2 \pi i \Delta B_{0}(\sigma)=\frac{2 \pi i}{\sigma} \sqrt{\lambda\left(\sigma, m^{\prime 2}, m^{2}\right)}$

Dispersion relation for $m^{\prime 2}<0$

If $m^{\prime 2} \in \mathbb{C}$ we have to change the contour accordingly (no branch point on the real axis):

$$
\begin{aligned}
& B_{0}\left(\left(q_{1}+k^{\prime}\right)^{2} ; m^{\prime 2}, m^{2}\right)= \\
& =\frac{1}{2 \pi i} \oint_{0} d \sigma \frac{B_{0}\left(\sigma ; m^{\prime 2}, m^{2}\right)}{\sigma-\left(q_{1}+k^{\prime}\right)^{2}-i \epsilon} \\
& =\frac{1}{2 \pi i} \int_{-\infty}^{+\infty} d \sigma \frac{B_{0}\left(\sigma ; m^{\prime 2}, m^{2}\right)}{\sigma-\left(q_{1}+k^{\prime}\right)^{2}-i \epsilon}
\end{aligned}
$$

Depending on the values of (x, y) the mass m^{\prime} can be either real or complex $\longrightarrow \int d x d y$ must be splitted in a real and complex region where to apply the correct dispersion relation (but let's focus only on the real case).

Step 3: Dispersion relation

We can re-write the two-point function using the appropriate dispersion relation $\longrightarrow \sigma$ parameter:

$$
\begin{gathered}
\mathcal{I}_{2}=\int d x d y \frac{\partial^{2}}{\partial\left(m^{\prime 2}\right)^{2}} B_{0}\left(\left(q_{1}+k^{\prime}\right)^{2}, m^{\prime 2}, m^{2}\right)=\int d x d y \frac{\partial^{2}}{\partial\left(m^{\prime 2}\right)^{2}} \int_{\sigma_{0}}^{\infty} d \sigma \frac{\Delta B_{0}\left(\sigma ; m^{\prime 2}, m^{2}\right)}{\sigma-\tilde{q}_{1}^{2}} \\
\text { where } \tilde{q}_{1} \equiv q_{1}+k^{\prime}+i \epsilon \text { and } \sigma_{0} \equiv\left(m+m^{\prime}\right)^{2}
\end{gathered}
$$

Since $\Delta B_{0}\left(\sigma_{0} ; m^{\prime 2}, m^{2}\right)=0$ we can use the Leibniz rule to move the $m^{\prime 2}$ derivative inside the integral, allowing us to re-write the integrand so that the lower bound $\sigma \rightarrow \sigma_{0}$ is not divergent

$$
\begin{aligned}
\mathcal{I}_{2}=\int d x d y\{ & \int_{\sigma_{0}}^{\infty} d \sigma \partial_{m^{\prime}}^{2} \Delta B_{0}\left(\sigma ; m^{\prime 2}, m^{2}\right)\left(\frac{1}{\sigma-\tilde{q}_{1}^{2}}-\frac{\sigma_{0}}{\sigma\left(\sigma_{0}-\tilde{q}_{1}^{2}\right)}\right) \\
& \left.+\frac{\sigma_{0}}{\sigma_{0}-\tilde{q}_{1}^{2}} \partial_{m^{\prime}}^{2} B_{0}\left(0 ; m^{\prime 2}, m^{2}\right)\right\}
\end{aligned}
$$

Step 4: One-loop integral

The q_{2} sub-loop has been reduced to an effective propagator with momentum $q_{1}+k_{1}^{\prime}$ and mass σ, reducing the full amplitude to a one-loop integral that can be computed with standard techniques.

$$
\begin{aligned}
& \mathcal{I}=\int d^{4} q_{1} \frac{1}{q_{1}^{2}-m^{2}} \frac{1}{\left(q_{1}+p_{1}\right)^{2}-m^{2}} \frac{1}{\left(q_{1}+p_{1}+p_{2}\right)^{2}-m^{2}} \times \mathcal{I}_{2} \\
& =-\int d x d y\left\{\int_{\sigma_{0}}^{\infty} d \sigma \partial_{m^{\prime}}^{2} \Delta B_{0}\left(\sigma ; m^{\prime 2}, m^{2}\right)\left[D_{0}(\sigma)-\frac{\sigma_{0}}{\sigma} D_{0}\left(\sigma_{0}\right)\right]\right. \\
& \left.+\sigma_{0} \partial_{m^{\prime}}^{2} \Delta B_{0}\left(0 ; m^{\prime 2}, m^{2}\right) D_{0}\left(\sigma_{0}\right)\right\}
\end{aligned}
$$

where $D_{0}\left(p_{1}^{2}, p_{2}^{2}, k_{2}^{\prime 2}, k_{1}^{\prime 2}, s, t^{\prime} ; m^{2}, m^{2}, m^{2}, \sigma\right) \equiv D_{0}(\sigma)$ with $t^{\prime} \equiv\left(p_{1}-k_{1}^{\prime}\right)^{2}$ is the 4-point scalar function.
The remaining 3-dimensional integral can be evaluated numerically with an improved efficiency.

Outlook

- We have done the math, so the next step is to obtain stable numerical results for the scalar case and compare them with other methods (WIP).
- We are considering this method for $\mu e \rightarrow \mu e$ scattering at NNLO in MESMER, namely for the two-box and box-triangle diagrams.
- The idea can also be applied to other leptonic processes such as $e e \rightarrow e e, e e \rightarrow \mu \mu$ and $e e \rightarrow \gamma \gamma$, both for VV at NNLO and RVV at $\mathrm{N}^{3} \mathrm{LO}$.
- A comparison with massification can be important to evaluate its uncertainty.

Backup

Real and complex regions of m^{\prime}

$$
m^{\prime 2}=[1-x y z-(1-x-y)(x+y)] m^{2}, z=s / m
$$

When $m^{\prime 2}>0 ?(0 \leq x \leq 1,0 \leq y \leq 1-x, z>4)$

$$
\left\{\begin{array}{l}
0 \leq y \leq 1-x \quad \text { for } \quad 0 \leq x \leq x_{a} \\
0 \leq y \leq \frac{1}{2} A(x)-\frac{1}{2} B(x) \text { for } x_{a} \leq x \leq x_{b} \\
0 \leq y \leq 1-x \quad \text { for } \quad x_{b} \leq x \leq 1
\end{array}\right.
$$

$$
\begin{gathered}
A(x)=1-2 x+x z \\
B(x)=\sqrt{z^{2} x^{2}-4 z x^{2}+2 x z-3} \\
x_{a}=\frac{1}{2}-\frac{1}{2} \sqrt{1-\frac{4}{z}} \quad x_{b}=\frac{1}{2}+\frac{1}{2} \sqrt{1-\frac{4}{z}}
\end{gathered}
$$

$$
\begin{aligned}
\mathcal{I}_{2} & =\int d x d y \frac{\partial^{2}}{\partial\left(m^{\prime 2}\right)^{2}} \int_{\sigma_{0}}^{\infty} d \sigma \frac{\Delta B_{0}\left(\sigma ; m^{\prime 2}, m^{2}\right)}{\sigma-\tilde{q}_{1}^{2}} \\
& =\int d x d y\left\{\int_{\sigma_{0}}^{\infty} d \sigma \frac{\partial_{m^{\prime}}^{2} \Delta B_{0}\left(\sigma ; m^{\prime 2}, m^{2}\right)}{\sigma-\tilde{q}_{1}^{2}}-\left[\frac{\partial_{m^{\prime}} \Delta B_{0}\left(\sigma ; m^{\prime 2}, m^{2}\right)}{\sigma-\tilde{q}_{1}^{2}}\right]_{\sigma \rightarrow \sigma_{0}}\right\} \\
& =\int d x d y\left\{\int_{\sigma_{0}}^{\infty} d \sigma \partial_{m^{\prime}}^{2} \Delta B_{0}\left(\sigma ; m^{\prime 2}, m^{2}\right)\left[\frac{1}{\sigma-\tilde{q}_{1}^{2}}+\frac{\sigma_{0}}{\sigma} \frac{1}{\sigma_{0}-\tilde{q}_{1}^{2}}-\frac{\sigma_{0}}{\sigma} \frac{1}{\sigma_{0}-\tilde{q}_{1}^{2}}\right]\right\} \\
& =\int d x d y\left\{\int_{\sigma_{0}}^{\infty} d \sigma \partial_{m^{\prime}}^{2} \Delta B_{0}\left(\sigma ; m^{\prime 2}, m^{2}\right)\left(\frac{1}{\sigma-\tilde{q}_{1}^{2}}-\frac{\sigma_{0}}{\sigma\left(\sigma_{0}-\tilde{q}_{1}^{2}\right)}\right)+\frac{\sigma_{0}}{\sigma_{0}-\tilde{q}_{1}^{2}} \partial_{m^{\prime}}^{2} B_{0}\left(0 ; m^{\prime 2}, m^{2}\right)\right\}
\end{aligned}
$$

