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Introduction

• Goal: Evaluation of two-loop box amplitudes with full mass dependency.

• We need a compromise between an (insane) analytical calculation and an

(inefficient) complete numerical computation.

• General idea: Reduce one of the two sub-loops in a self-energy by introducing

two Feynman parameters, so that the corresponding two-point function

can be re-written in a propagator-like form by using a dispersion relation.

• This leads to a standard one-loop amplitude with a further 3-dimensional integral

(2 Feynman parameters + 1 dispersion parameter) to be evaluated numerically.

• Currently considered for µe → µe at NNLO in MESMER, but it can be also

applied to ee → ee, ee → µµ and ee → γγ.

• No numerical result yet, but let’s explain how the method works.
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Benchmark diagram

In this talk: scalar two-box diagram p1 p2 → k1 k2 with all masses equal to m.

I =

∫
d4q1 d

4q2
1

q21 −m2 + iϵ

1

(q1 + p1)2 −m2 + iϵ

1

(q1 + p1 + p2)2 −m2 + iϵ

× 1

(q1 − q2)2 −m2 + iϵ

1

q22 −m2 + iϵ

1

(q2 + k1)2 −m2 + iϵ

1

(q2 + k1 + k2)2 −m2 + iϵ
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Step 1: Feynman parametrisation

We apply the Feynman parametrisation to the three propagators depending on q2 but not q1
to reduce the q2 sub-loop into a self-energy sub-diagram −→ x, y parameters:

Auxiliary momentum and mass:

k′ ≡ (1− x)k1 + yk2

m′2 ≡ m2 − xy(k1 + k2)
2 − (1− x− y)(xk2

1 + yk2
2)

1

q22 −m2 + iϵ

1

(q2 + k1)2 −m2 + iϵ

1

(q2 + k1 + k2)2 −m2 + iϵ
=

∫ 1

0

dx

∫ 1−x

0

dy
2

[(q2 + k′)2 −m′2 + iϵ]3
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Step 2: Two-point scalar function

We can now write the q2 sub-loop in terms of the (derivative of the) two-point scalar function B0:

External effective momenta:

k′
1 ≡ xk1 + (1− y)k2

k′
2 ≡ (1− x)k1 + yk2

I2 =

∫
dx dy

∫
d4q2

1

(q1 − q2)2 −m2 + iϵ

2

[(q2 + k′)2 −m′2 + iϵ]3

=

∫
dx dy

∂2

∂ (m′2)2
B0

(
(q1 + k′)2,m′2,m2 )
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Dispersion relation for m′ 2 > 0

If m′2 ∈ R we can write the dispersion relation for B0 using the usual pac-man contour:

Im σ

Re σ

(m1+m2)2

Im σ

Re σ

(m1+m2)2

Figure 4: Integration contour for B0 (p2; m2
1, m2

2) for real masses (left) and one complex mass
(right). The circular sections are both centred in the origin with a radius R → ∞.

is the branch cut discontinuity [8]. Explicitly, in four dimensions we have

∆B0
(
σ; m2

1, m2
2
)

= 1
2πi

DiscB0
(
σ; m2

1, m2
2
)

= 1
σ

√
λ
(
σ, m2

1, m2
2
)

, (12)

where

λ(a, b, c) = (a − b − c)2 − 4bc = a2 + b2 + c2 − 2ab − 2ac − 2bc (13)

is the usual Källén function. If one of the two masses is complex, the branch cut is still extended
from (m1 + m2)2 to infinity, but parallel to the imaginary axis. Choosing a semicircular contour,
as shown in the right side of Figure 4, we obtain the alternative dispersion relation

B0
(
p2; m2

1, m2
2
)

= 1
2πi

∮
dσ

B0
(
σ; m2

1, m2
2
)

σ − p2 − iϵ
= 1

2πi

∫ +∞

−∞
dσ

B0
(
σ; m2

1, m2
2
)

σ − p2 − iϵ
. (14)

Substituting the dispersion relation (10) in (8), we obtain

I2 =
∫

dx dy
∂2

∂ (m′2)2

∫ ∞

σ0
dσ

∆B0
(
σ; m′2, m2 )

σ − q̃2
1

, (15)

where we have introduced

q̃1 ≡ q1 + k′ + iϵ σ0 ≡ (m + m′)2 . (16)

We can interpret I2 as an effective propagator with momentum q̃1 and mass σ. This procedure
can be applied to any scalar two-loop integral with a self-energy sub-loop, as discussed in [9].
Since ∆B0

(
σ0; m′2, m2 ) = 0, we can use the Leibniz integral rule to move the m′2 derivative

inside the dispersion integral, obtaining

I2 =
∫

dx dy

{∫ ∞

σ0
dσ

∂2
m′ ∆B0

(
σ; m′2, m2 )

σ − q̃2
1

−
[

∂m′ ∆B0
(
σ; m′2, m2 )

σ − q̃2
1

]

σ→σ0

}
, (17)

where we have introduced the short-hand notation ∂m′ ≡ ∂/∂(m′2). The two terms in curly

4

B0

(
(q1 + k′)2; m′2, m2) =

=
1

2πi

∮
dσ

B0

(
σ; m′2, m2

)
σ − (q1 + k′)2 − iϵ

=

=
1

2πi

∫ +∞

(m1+m2)2
dσ

DiscB0

(
σ; m′2, m2

)
σ − (q1 + k′)2 − iϵ

DiscB0 (σ) = lim
η→0

[B0 (σ + iη)−B0 (σ − iη)] = 2i ImB0 (σ) ≡ 2πi∆B0 (σ) =
2πi

σ

√
λ (σ, m′2, m2)

Andrea Gurgone Dispersive Approach to Massive Two-Loop Amplitudes Zurich – 6 June 2023 7 / 11



Dispersion relation for m′ 2 < 0

If m′2 ∈ C we have to change the contour accordingly (no branch point on the real axis):

Im σ

Re σ

(m1+m2)2

Im σ

Re σ

(m1+m2)2

Figure 4: Integration contour for B0 (p2; m2
1, m2

2) for real masses (left) and one complex mass
(right). The circular sections are both centred in the origin with a radius R → ∞.

is the branch cut discontinuity [8]. Explicitly, in four dimensions we have

∆B0
(
σ; m2

1, m2
2

)
= 1

2πi
DiscB0

(
σ; m2

1, m2
2

)
= 1

σ

√
λ
(
σ, m2

1, m2
2
)

, (12)

where

λ(a, b, c) = (a − b − c)2 − 4bc = a2 + b2 + c2 − 2ab − 2ac − 2bc (13)

is the usual Källén function. If one of the two masses is complex, the branch cut is still extended
from (m1 + m2)2 to infinity, but parallel to the imaginary axis. Choosing a semicircular contour,
as shown in the right side of Figure 4, we obtain the alternative dispersion relation

B0
(
p2; m2

1, m2
2

)
= 1

2πi

∮
dσ

B0
(
σ; m2

1, m2
2
)

σ − p2 − iϵ
= 1

2πi

∫ +∞

−∞
dσ

B0
(
σ; m2

1, m2
2
)

σ − p2 − iϵ
. (14)

Substituting the dispersion relation (10) in (8), we obtain

I2 =
∫

dx dy
∂2

∂ (m′2)2

∫ ∞

σ0
dσ

∆B0
(
σ; m′2, m2 )
σ − q̃2

1
, (15)

where we have introduced

q̃1 ≡ q1 + k′ + iϵ σ0 ≡ (m + m′)2 . (16)

We can interpret I2 as an effective propagator with momentum q̃1 and mass σ. This procedure
can be applied to any scalar two-loop integral with a self-energy sub-loop, as discussed in [9].
Since ∆B0

(
σ0; m′2, m2 ) = 0, we can use the Leibniz integral rule to move the m′2 derivative

inside the dispersion integral, obtaining

I2 =
∫

dx dy

{∫ ∞

σ0
dσ

∂2
m′ ∆B0

(
σ; m′2, m2 )

σ − q̃2
1

−
[

∂m′ ∆B0
(
σ; m′2, m2 )

σ − q̃2
1

]
σ→σ0

}
, (17)

where we have introduced the short-hand notation ∂m′ ≡ ∂/∂(m′2). The two terms in curly

4

B0

(
(q1 + k′)2; m′2, m2) =

=
1

2πi

∮
dσ

B0

(
σ; m′2, m2

)
σ − (q1 + k′)2 − iϵ

=
1

2πi

∫ +∞

−∞
dσ

B0

(
σ; m′2, m2

)
σ − (q1 + k′)2 − iϵ

Depending on the values of (x, y) the mass m′ can be either real or complex −→
∫
dxdy must be splitted in a

real and complex region where to apply the correct dispersion relation (but let’s focus only on the real case).
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Step 3: Dispersion relation

We can re-write the two-point function using the appropriate dispersion relation −→ σ parameter:

I2 =

∫
dx dy

∂2

∂ (m′2)2
B0

(
(q1 + k′)2,m′2,m2 ) =

∫
dx dy

∂2

∂ (m′2)2

∫ ∞

σ0

dσ
∆B0

(
σ; m′2,m2

)
σ − q̃21

where q̃1 ≡ q1 + k′ + iϵ and σ0 ≡ (m+m′)2

Since ∆B0

(
σ0; m

′2,m2
)
= 0 we can use the Leibniz rule to move the m′2 derivative inside the integral,

allowing us to re-write the integrand so that the lower bound σ → σ0 is not divergent

I2 =

∫
dx dy

{∫ ∞

σ0

dσ ∂2
m′ ∆B0

(
σ; m′2,m2 )( 1

σ − q̃21
− σ0

σ (σ0 − q̃21)

)

+
σ0

σ0 − q̃21
∂2
m′ B0

(
0; m′2,m2 )}
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Step 4: One-loop integral

The q2 sub-loop has been reduced to an effective propagator with momentum q1 + k′
1 and mass σ,

reducing the full amplitude to a one-loop integral that can be computed with standard techniques.

I =

∫
d4q1

1

q21 −m2

1

(q1 + p1)2 −m2

1

(q1 + p1 + p2)2 −m2
× I2

= −
∫

dx dy

{∫ ∞

σ0

dσ ∂2
m′ ∆B0

(
σ; m′2,m2 ) [D0 (σ)−

σ0

σ
D0 (σ0)

]
+ σ0 ∂

2
m′ ∆B0

(
0; m′2,m2 )D0 (σ0)

}

where D0

(
p21, p

2
2, k

′2
2 , k′2

1 , s, t′; m2, m2, m2, σ
)
≡ D0 (σ) with t′ ≡ (p1−k′

1)
2 is the 4-point scalar function.

The remaining 3-dimensional integral can be evaluated numerically with an improved efficiency.
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Outlook

• We have done the math, so the next step is to obtain stable numerical results for the scalar case

and compare them with other methods (WIP).

• We are considering this method for µe → µe scattering at NNLO in MESMER, namely for the

two-box and box-triangle diagrams.

• The idea can also be applied to other leptonic processes such as ee → ee, ee → µµ and ee → γγ,

both for VV at NNLO and RVV at N3LO.

• A comparison with massification can be important to evaluate its uncertainty.
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Backup
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Real and complex regions of m′

0.0 0.2 0.4 0.6 0.8 1.0
x

0.0

0.2

0.4

0.6

0.8

1.0

y

s = 16m2

m′ ∈ R
m′ ∈ C

m′2 = [1− xyz − (1− x− y)(x+ y)]m2, z = s/m

When m′2 > 0? (0 ≤ x ≤ 1, 0 ≤ y ≤ 1− x, z > 4)


0 ≤ y ≤ 1− x for 0 ≤ x ≤ xa

0 ≤ y ≤ 1

2
A(x)− 1

2
B(x) for xa ≤ x ≤ xb

0 ≤ y ≤ 1− x for xb ≤ x ≤ 1

A(x) = 1− 2x+ xz

B(x) =
√

z2x2 − 4zx2 + 2xz − 3

xa =
1

2
− 1

2

√
1− 4

z
xb =

1

2
+

1

2

√
1− 4

z
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Step 3b: Lower bound subtraction

I2 =

∫
dx dy

∂2

∂ (m′2)2

∫ ∞

σ0

dσ
∆B0

(
σ; m′2,m2

)
σ − q̃21

=

∫
dx dy


∫ ∞

σ0

dσ
∂2
m′ ∆B0

(
σ; m′2,m2

)
σ − q̃21

−

[
∂m′ ∆B0

(
σ; m′2,m2

)
σ − q̃21

]
σ→σ0


=

∫
dx dy

{∫ ∞

σ0

dσ ∂2
m′ ∆B0

(
σ; m′2,m2 ) [ 1

σ − q̃21
+

σ0

σ

1

σ0 − q̃21
− σ0

σ

1

σ0 − q̃21

]}

=

∫
dx dy

{∫ ∞

σ0

dσ ∂2
m′ ∆B0

(
σ; m′2,m2 )( 1

σ − q̃21
− σ0

σ (σ0 − q̃21)

)
+

σ0

σ0 − q̃21
∂2
m′ B0

(
0; m′2,m2 )}
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