Towards \mathbf{N}^{3} LO: three-loop form factors

5th Workstop / Thinkstart: Radiative corrections and Monte Carlo tools for Strong 2020 | June 5-9, 2023
Fabian Lange
in collaboration with Matteo Fael, Kay Schönwald, Matthias Steinhauser | June 6, 2023

Motivation

- Form factors are basic building blocks for many physical observables:
- $t \bar{t}$ production at hadron and $e^{+} e^{-}$colliders
- Higgs production and decay
- Low-energy $e^{+} e^{-}$collisions and μe scattering

- Form factors exhibit an universal infrared behavior which is interesting to study

The process

Types of contributions

n_{\mid}singlet

contributions with $m^{\prime} \neq m$

Status of massive QCD corrections

nonsinglet:

singlet:

$F_{i}^{(2)}$ (NNLO):

- fermionic contributions [Hoang, Teubner 1997]
- QED [Bonciani, Mastrolia, Remiddi 2003]
- complete (except contributions with $m^{\prime} \neq m$) [Bernreuther, Bonciani, Gehrmann, Heinesch, Leineweber, Mastrolia, Remiddi 2004-2005]
$F_{i}^{(3)}$ (NNNLO):
- nonsinglet large $N_{\text {c }}$ [Henn, Smirnov, Smirnov, Steinhauser 2016; Lee, Smirnov, Smirnov, Steinhauser 2018; Ablinger, Blümlein, Marquard, Rana, Schneider 2×2018; Lee, Smirnov, Smirnov, Steinhauser 2018]
- nonsinglet n_{1} [Lee, Smirnov, Smirnov, Steinhauser 2018; Ablinger, Blümlein, Marquard, Rana, Schneider 2 $\times 2018]$
- nonsinglet n_{h} (partially) [Blümlein, Marquard, Rana, Schneider 2019]
- complete (except contributions with $m^{\prime} \neq m$) [Fael, FL, Schönwald, Steinhauser $2 \times 2022+$ 2023]

Setup

	nonsinglet	n_{h}-singlet	n_{l}-singlet
diagrams	271	66	66
families	34	17	13
integrals	302671	106883	127980
masters	422	316	158

- Generate diagrams with qgraf [Nogueira 1991]
- Map to predefined integral families with q2e/exp [Harlander, Seidensticker, Steinhauser 1998; Seidensticker 1999]
- FORM [Vermaseren 2000; Kuipers, Ueda, Vermaseren, Vollinga 2013; Ruijl, Ueda, Vermaseren 2017] for Lorentz, Dirac, and color algebra [van Ritbergen, Schellekens, Vermaseren 1998]
- Reduction to master integrals with Kira [Maierhöfer, Usovitsch, Uwer 2017; Klappert, FL, Maierhöfer, Usovitsch 2020] and Fermat [Lewis]
- Construct good basis where denominators factorize in ϵ and \hat{s} with ImproveMasters.m [Smirnov, Smirnov 2020]
- Establish differential equations in \hat{s} with LiteRed [Lee 2012 + 2013]

Algorithm to solve master integrals (I)

$$
\frac{\partial}{\partial \hat{s}} M_{n}=A_{n m}(\epsilon, \hat{s}) M_{m}
$$

- Compute expansion around $\hat{s}=0$ by:
- Inserting an ansatz for the master integrals into the differential equation:

$$
M_{n}(\epsilon, \hat{s}=0)=\sum_{i=-3}^{\infty} \sum_{j=0}^{j_{\max }} c_{i j}^{(n)} \epsilon^{i} \hat{s}^{j}
$$

- Compare coefficients in ϵ and \hat{s} to establish linear system of equations for $c_{i j}^{(n)}$:

$$
c_{12}^{(1)} \epsilon \hat{S}^{2}+\cdots=52 c_{33}^{(1)} \epsilon \hat{S}^{2}+\cdots+127 c_{14}^{(4)} \epsilon \hat{S}^{2}+\ldots
$$

- Solve system in terms of small number of boundary constants using Kira with FireFly [Klappert, FL 2019; Klappert, Klein, FL 2020]:

$$
c_{12}^{(1)}=52 c_{33}^{(1)}+127 c_{14}^{(4)}
$$

- Compute boundary values to fix remaining constants

Algorithm to solve master integrals (II)

$$
\frac{\partial}{\partial \hat{s}} M_{n}=A_{n m}(\epsilon, \hat{s}) M_{m}
$$

- Repeat for $\hat{s}=\hat{s}_{1}$:
- Insert an ansatz around $\hat{s}=\hat{s}_{1}$ into the differential equation:

$$
M_{n}\left(\epsilon, \hat{s}=\hat{s}_{1}\right)=\sum_{i=-3}^{\infty} \sum_{j=0}^{j_{\max }} c_{i j}^{(n)} \epsilon^{i}\left(\hat{s}-\hat{s}_{1}\right)^{j}
$$

- Compare coefficients in ϵ and \hat{s} and solve system:

$$
c_{12}^{(1)} \epsilon\left(\hat{s}-\hat{s}_{1}\right)^{2}+\cdots=12 c_{44}^{(1)} \epsilon\left(\hat{s}-\hat{s}_{1}\right)^{2}+\cdots-23 c_{04}^{(4)} \epsilon\left(\hat{s}-\hat{s}_{1}\right)^{2}+\ldots \quad \Rightarrow \quad c_{12}^{(1)}=12 c_{44}^{(1)}-23 c_{04}^{(4)}
$$

- Match this new expansion to previous expansion around $\hat{s}=0$ numerically in between, e.g. at $\hat{s}_{1} / 2$, to fix the boundary constants
- Repeat

Calculation of boundary conditions: nonsinglet

- For $s=0$ the nonsinglet master integrals reduce to 3-loop on-shell propagators:
- Well studied in the literature [Laporta, Remiddi 1996; Melnikov, van Ritbergen 1999; Lee, Smirnov 2010]
- Some higher-order terms were missing for our calculation
- Using the dimensional-recurrence relations from [Lee, Smirnov 2010] we calculated them with SummerTime.m [Lee, Mingulov 2015] and PSLQ [Ferguson, Bailey, Arno 1999]

Calculation of boundary conditions: singlet

- n_{h} singlet boundary conditions require asymptotic expansion due to massless cuts:
- Reveal regions with ASY.m [Smirnov, Pak 2010; Jantzen, Smirnov, Smirnov 2012]
- Naive region same as for nonsinglet
- Remaining regions can be integrated directly or with HyperInt [Panzer 2014]

Calculation of boundary conditions: singlet

- n_{h} singlet boundary conditions require asymptotic expansion due to massless cuts:
- Reveal regions with ASY.m [Smirnov, Pak 2010; Jantzen, Smirnov, Smirnov 2012]
- Naive region same as for nonsinglet
- Remaining regions can be integrated directly or with HyperInt [Panzer 2014]
- n_{l} singlet boundary conditions:
- Even more massless cuts and direct integration for some regions too complicated
- Instead use AMFlow [Liu, Ma 2022] to compute them numerically at $\hat{s}=-1$ with 86 digits

Example

- Expansion around $\hat{s}=0$

Example

- Expansion around $\hat{s}=0$
- Expansion around $\hat{s}=-4$, matched at $\hat{s}=-2$

Example

- Expansion around $\hat{s}=0$
- Expansion around $\hat{s}=-4$, matched at $\hat{s}=-2$
- Expansion around $\hat{s}=-8$, matched at $\hat{s}=-6$

Results - analytic expansion around $\hat{s}=0$

$$
\begin{aligned}
F_{1}^{v, f,(3)}(\hat{s}=0) & =\left\{C _ { F } ^ { 3 } \left(-15 a_{4}-\frac{17 \pi^{2} \zeta_{3}}{24}-\frac{18367 \zeta_{3}}{1728}+\frac{25 \zeta_{5}}{8}-\frac{5 l_{2}^{4}}{8}-\frac{19}{40} \pi^{2} I_{2}^{2}+\frac{4957 \pi^{2} l_{2}}{720}+\frac{3037 \pi^{4}}{25920}\right.\right. \\
& \left.-\frac{24463 \pi^{2}}{7776}+\frac{13135}{20736}\right)+C_{A} C_{F}^{2}\left(\frac{19 a_{4}}{2}-\frac{\pi^{2} \zeta_{3}}{9}+\frac{17725 \zeta_{3}}{3456}-\frac{55 \zeta_{5}}{32}+\frac{19 l_{2}^{4}}{48}-\frac{97}{720} \pi^{2} l_{2}^{2}\right. \\
& \left.+\frac{29 \pi^{2} l_{2}}{240}-\frac{347 \pi^{4}}{17280}-\frac{4829 \pi^{2}}{10368}+\frac{707}{288}\right)+C_{A}^{2} C_{F}\left(-a_{4}+\frac{7 \pi^{2} \zeta_{3}}{96}+\frac{4045 \zeta_{3}}{5184}-\frac{5 \zeta_{5}}{64}-\frac{l_{2}^{4}}{24}\right. \\
& \left.\left.+\frac{67}{360} \pi^{2} l_{2}^{2}-\frac{5131 \pi^{2} l_{2}}{2880}+\frac{67 \pi^{4}}{8640}+\frac{172285 \pi^{2}}{186624}-\frac{7876}{2187}\right)\right\} \hat{s}+\text { fermionic corrections }+\mathcal{O}\left(\hat{s}^{2}\right)
\end{aligned}
$$

- $I_{2}=\ln (2), a_{4}=\operatorname{Li}_{4}(1 / 2)$ and $C_{\mathrm{A}}=3, C_{\mathrm{F}}=4 / 3$ for QCD
- Expansions for all currents are available up to $\mathcal{O}\left(\hat{s}^{67}\right)$

Results - high-energy limit

$$
\begin{aligned}
& \left.F_{1}^{\mathrm{vf},(3)}\right|_{s \rightarrow-\infty}=4.7318 C_{\mathrm{F}}^{3}-20.762 C_{\mathrm{F}}^{2} C_{\mathrm{A}}+8.3501 C_{\mathrm{F}} C_{\mathrm{A}}^{2}+\left[3.4586 C_{\mathrm{F}}^{3}-4.0082 C_{\mathrm{F}}^{2} C_{\mathrm{A}}-6.3561 C_{\mathrm{F}} C_{\mathrm{A}}^{2}\right] I_{S} \\
& +\left[1.4025 C_{\mathrm{F}}^{3}+0.51078 C_{\mathrm{F}}^{2} C_{\mathrm{A}}-2.2488 C_{\mathrm{F}} C_{\mathrm{A}}^{2}\right] l_{s}^{2}+\left[0.062184 C_{\mathrm{F}}^{3}+0.90267 C_{\mathrm{F}}^{2} C_{\mathrm{A}}-0.42778 C_{\mathrm{F}} C_{\mathrm{A}}^{2}\right] l_{s}^{3} \\
& +\left[-0.075860 C_{\mathrm{F}}^{3}+0.20814 C_{\mathrm{F}}^{2} C_{\mathrm{A}}-0.035011 C_{\mathrm{F}} C_{\mathrm{A}}^{2}\right]{I_{s}^{4}}_{4}+\left[-0.023438 C_{\mathrm{F}}^{3}+0.019097 C_{\mathrm{F}}^{2} C_{\mathrm{A}}\right] I_{s}^{5} \\
& +\left[-0.0026042 C_{\mathrm{F}}^{3}\right] l_{s}^{6}-\left\{-92.918 C_{\mathrm{F}}^{3}+123.65 C_{\mathrm{F}}^{2} C_{\mathrm{A}}-47.821 C_{\mathrm{F}} C_{\mathrm{A}}^{2}+\left[-10.381 C_{\mathrm{F}}^{3}+2.3223 C_{\mathrm{F}}^{2} C_{\mathrm{A}}\right.\right. \\
& \left.+17.305 C_{\mathrm{F}} C_{\mathrm{A}}^{2}\right] I_{s}+\left[4.9856 C_{\mathrm{F}}^{3}-19.097 C_{\mathrm{F}}^{2} C_{\mathrm{A}}+8.0183 C_{\mathrm{F}} C_{\mathrm{A}}^{2}\right] I_{s}^{2}+\left[3.0499 C_{\mathrm{F}}^{3}-6.8519 C_{\mathrm{F}}^{2} C_{\mathrm{A}}+1.9149 C_{\mathrm{F}} C_{\mathrm{A}}^{2}\right] l_{s}^{3} \\
& +\left[0.67172 C_{\mathrm{F}}^{3}-0.91213 C_{\mathrm{F}}^{2} C_{\mathrm{A}}+0.24069 C_{\mathrm{F}} C_{\mathrm{A}}^{2}\right]{l_{s}^{4}}_{4}+\left[0.13229 C_{\mathrm{F}}^{3}-0.051389 C_{\mathrm{F}}^{2} C_{\mathrm{A}}+0.0043403 C_{\mathrm{F}} C_{\mathrm{A}}^{2}\right] l_{s}^{5} \\
& \left.+\left[0.0041667 C_{\mathrm{F}}^{3}-0.0010417 C_{\mathrm{F}}^{2} C_{\mathrm{A}}-0.00052083 C_{\mathrm{F}} C_{\mathrm{A}}^{2}\right] l_{s}^{6}\right\} \frac{m^{2}}{s}+\mathcal{O}\left(\frac{m^{4}}{s^{2}}\right)+\text { fermionic contributions }
\end{aligned}
$$

Results - high-energy limit

$$
\begin{aligned}
& \left.F_{1}^{\mathrm{vf},(3)}\right|_{s \rightarrow-\infty}=4.7318 C_{\mathrm{F}}^{3}-20.762 C_{\mathrm{F}}^{2} C_{\mathrm{A}}+8.3501 C_{\mathrm{F}} C_{\mathrm{A}}^{2}+\left[3.4586 C_{\mathrm{F}}^{3}-4.0082 C_{\mathrm{F}}^{2} C_{\mathrm{A}}-6.3561 C_{\mathrm{F}} C_{\mathrm{A}}^{2}\right] I_{S} \\
& +\left[1.4025 C_{\mathrm{F}}^{3}+0.51078 C_{\mathrm{F}}^{2} C_{\mathrm{A}}-2.2488 C_{\mathrm{F}} C_{\mathrm{A}}^{2}\right] l_{s}^{2}+\left[0.062184 C_{\mathrm{F}}^{3}+0.90267 C_{\mathrm{F}}^{2} C_{\mathrm{A}}-0.42778 C_{\mathrm{F}} C_{\mathrm{A}}^{2}\right] l_{s}^{3} \\
& +\left[-0.075860 C_{\mathrm{F}}^{3}+0.20814 C_{\mathrm{F}}^{2} C_{\mathrm{A}}-0.035011 C_{\mathrm{F}} C_{\mathrm{A}}^{2}\right] I_{s}^{4}+\left[-0.023438 C_{\mathrm{F}}^{3}+0.019097 C_{\mathrm{F}}^{2} C_{\mathrm{A}}\right] I_{s}^{5} \\
& +\left[-0.0026042 C_{\mathrm{F}}^{3}\right] I_{S}^{6}-\left\{-92.918 C_{\mathrm{F}}^{3}+123.65 C_{\mathrm{F}}^{2} C_{\mathrm{A}}-47.821 C_{\mathrm{F}} C_{\mathrm{A}}^{2}+\left[-10.381 C_{\mathrm{F}}^{3}+2.3223 C_{\mathrm{F}}^{2} C_{\mathrm{A}}\right.\right. \\
& \left.+17.305 C_{\mathrm{F}} C_{\mathrm{A}}^{2}\right] I_{S}+\left[4.9856 C_{\mathrm{F}}^{3}-19.097 C_{\mathrm{F}}^{2} C_{\mathrm{A}}+8.0183 C_{\mathrm{F}} C_{\mathrm{A}}^{2}\right] I_{s}^{2}+\left[3.0499 C_{\mathrm{F}}^{3}-6.8519 C_{\mathrm{F}}^{2} C_{\mathrm{A}}+1.9149 C_{\mathrm{F}} C_{\mathrm{A}}^{2}\right] I_{S}^{3} \\
& +\left[0.67172 C_{\mathrm{F}}^{3}-0.91213 C_{\mathrm{F}}^{2} C_{\mathrm{A}}+0.24069 C_{\mathrm{F}} C_{\mathrm{A}}^{2}\right] l_{s}^{4}+\left[0.13229 C_{\mathrm{F}}^{3}-0.051389 C_{\mathrm{F}}^{2} C_{\mathrm{A}}+0.0043403 C_{\mathrm{F}} C_{\mathrm{A}}^{2}\right] l_{s}^{5} \\
& \left.+\left[0.0041667 C_{\mathrm{F}}^{3}-0.0010417 C_{\mathrm{F}}^{2} C_{\mathrm{A}}-0.00052083 C_{\mathrm{F}} C_{\mathrm{A}}^{2}\right] l_{s}^{6}\right\} \frac{m^{2}}{s}+\mathcal{O}\left(\frac{m^{4}}{s^{2}}\right)+\text { fermionic contributions }
\end{aligned}
$$

Dedicated calculation of leading logarithms [Liu, Penin, Zert 2017]:

$$
F_{1}^{v, f,(3)}=-\frac{C_{F}^{3}}{384} I_{s}^{6}-\frac{m^{2}}{s}\left(\frac{C_{F}^{3}}{240}-\frac{C_{F}^{2} C_{A}}{960}-\frac{C_{F} C_{A}^{2}}{1920}\right) I_{s}^{6}+\ldots, \quad \text { with } I_{s}=\ln \left(\frac{m^{2}}{-s}\right)
$$

- We reproduce these terms with high precision

Results - pole cancellation

- We use the pole cancellation to estimate the precision
- To estimate the number of significant digits we use

$$
\log _{10}\left(\left|\frac{\text { expansion }- \text { analytic } C T}{\text { analytic } C T}\right|\right)
$$

\Rightarrow We estimate at least 8 correct digits for the finite terms for QCD and 10 correct digits for QED

- Most regions for most color factors and especially singlet contributions much more precise

Results - some plots: nonsinglet

Results - some plots: singlet

Institute for Theoretical Particle Physics and

Public implementation - Mathematica

- Bare as well as both ultraviolet and infrared finite form factors implemented as grids for Mathematica: formfactors3l

```
Get["FormFactors3l.m"]
```

In[] := FormFactorBareNonSing[veF1, 0, -1]
Out[] := 77.0506 cA^2 cR+95.0634 cA cR^2+0.467466 cR^3
-21.9243 cA cR I2R nh-11.5582 cR^2 I2R nh+0.751403 cR I2R^2 nh^2
-62.6063 cA cR I2R nl-45.5408 cR^2 I2R nl+9.35837 cR I2R^2 nh nl
+11.8102 cR I2R^2 nl^2
In[] := FormFactorRenNonSing[veF1, -1]
Out[] := 3.10714 cA^2 cR-3.23413 cA cR^2+0.0144347 cR^3
+0.0435081 cA cR I2R nh-0.0640418 cR^2 I2R nh
-0.0107609 cR I2R^2 nh^2-2.59041 cA cR I2R nl
+1.02032 cR^2 I2R nl+0.000282528 cR I2R^2 nh nl
+0.494057 cR I2R^2 nl^2

Public implementation - Fortran

- Ultraviolet renormalized, infrared unsubtracted form factors implemented as grids in Fortran library ff3l
- Specialization to QED by adding suffix _qed to function calls
- Ready for Monte-Carlo tools

```
program examplel
    use ff3l
    implicit none
    double complex :: f1v
    double precision :: s = 10
    integer :: eporder
    do eporder = -3,0
        f1v = ff3l_veF1(s,eporder)
        print *,"F1( s = ",s,", ep = ",eporder," ) = ", flv
    enddo
end program example1
```


Summary

Karlsruhe Institute of Technology

- Calculated massive form factors at NNNLO in QCD
- Applied a semianalytic method by constructing series expansions and matching numerically
- Reproduce known results from the literature:
- large- N_{c} limit, n_{l}, and partial n_{h} contributions
- static, high-energy, and threshold expansions
- Checked chiral Ward identity for singlet contributions
- Estimate precision to at least 8 significant digits over the whole real axis for QCD and 10 significant digits for QED
- Results available as grids for both Mathematica and Fortran

Outlook: contributions with a second mass $m^{\prime} \neq m$ (extremely preliminary)

- NNLO:
- 1 bubble diagram
- Can be expressed through dispersion integral over vacuum polarization as for the hadronic corrections [Fael 2018]
- Leptonic vacuum polarization known through four loops in QED [Sturm 2013] and top contribution to three loops in QCD [Chetyrkin, Kühn, Steinhauser 1995 + 1996]
- NNNLO:
- 42 nonsinglet diagrams, some of them with topologies beyond bubbles
- 152 master integrals
- Boundaries at $s=0$ available, but already complicated functions of ratio $\frac{\mathrm{m}^{\prime}}{\mathrm{m}}$ [Fael, Schönwald, Steinhauser 2020]
- Then symbolic expansions in $\frac{m^{\prime}}{m}$ and $\frac{s}{m}$ and match numerically?
- Or solve numerically in relevant range $\frac{s}{m}$ for fixed $\frac{m^{\prime}}{m}$ like [Boughezal, Czakon, Schutzmeier 2007; Czakon, Niggetiedt 2020] ?

Why numerical?

$$
q^{2}=s=-\frac{(1-x)^{2}}{x}
$$

- Large- N_{c} and n_{l} contributions at NNNLO can be written as iterated integrals over letters

$$
\frac{1}{x}, \frac{1}{1+x}, \frac{1}{1-x}, \frac{1}{1-x+x^{2}}, \frac{x}{1-x+x^{2}}
$$

- n_{h} terms already contain structures beyond iterated integrals (elliptic integrals)
\Rightarrow No ready-to-use tools available for analytic solution
\Rightarrow Instead: Full solution through analytic series expansions and numerical matching

Series expansions

- Different ansätze for different points:
regular point: $\quad M_{n}\left(\epsilon, \hat{s}=\hat{s}_{0}\right)=\sum_{i=-3}^{\infty} \sum_{j=0}^{j_{\text {max }}} c_{i j}^{(n)} \epsilon^{i}\left(\hat{s}-\hat{s}_{0}\right)^{j}$

Series expansions

- Different ansätze for different points:

$$
\begin{array}{ll}
\text { regular point: } & M_{n}\left(\epsilon, \hat{s}=\hat{s}_{0}\right)=\sum_{i=-3}^{\infty} \sum_{j=0}^{j_{\max }} c_{i j}^{(n)} \epsilon^{i}\left(\hat{s}-\hat{s}_{0}\right)^{j} \\
s= \pm \infty \text { (high-energy limit): } & M_{n}(\epsilon, \hat{s} \rightarrow \pm \infty)=\sum_{i=-3}^{\infty} \sum_{j=-s_{\min }}^{j_{\max }} \sum_{k=0}^{i+6} c_{i j k}^{(n)} \epsilon^{i} \hat{s}^{-j} \ln ^{k}(\hat{s})
\end{array}
$$

Series expansions

- Different ansätze for different points:
regular point: $\quad M_{n}\left(\epsilon, \hat{s}=\hat{s}_{0}\right)=\sum_{i=-3}^{\infty} \sum_{j=0}^{j_{\max }} c_{i j}^{(n)} \epsilon^{i}\left(\hat{s}-\hat{s}_{0}\right)^{j}$
$s= \pm \infty$ (high-energy limit): $\quad M_{n}(\epsilon, \hat{s} \rightarrow \pm \infty)=\sum_{i=-3}^{\infty} \sum_{j=-s_{\min }}^{j_{\max }} \sum_{k=0}^{i+6} c_{i j k}^{(n)} \epsilon^{i} \hat{\boldsymbol{s}}^{-j} \ln ^{k}(\hat{\boldsymbol{s}})$
$s=4 m^{2}$ (2-particle threshold): $\quad M_{n}(\epsilon, \hat{s}=4)=\sum_{i=-3}^{\infty} \sum_{j=-s_{\text {min }}}^{j_{\text {max }}} \sum_{k=0}^{i+3} c_{i j k}^{(n)} \epsilon^{i}[\sqrt{4-\hat{s}}]^{j} \ln ^{k}(\sqrt{4-\hat{s}})$

Series expansions

- Different ansätze for different points:
regular point: $\quad M_{n}\left(\epsilon, \hat{s}=\hat{s}_{0}\right)=\sum_{i=-3}^{\infty} \sum_{j=0}^{j_{\max }} c_{i j}^{(n)} \epsilon^{i}\left(\hat{s}-\hat{s}_{0}\right)^{j}$
$s= \pm \infty$ (high-energy limit): $\quad M_{n}(\epsilon, \hat{s} \rightarrow \pm \infty)=\sum_{i=-3}^{\infty} \sum_{j=-s_{\min }}^{j_{\max }} \sum_{k=0}^{i+6} c_{i j k}^{(n)} \epsilon^{i} \hat{\boldsymbol{s}}^{-j} \ln ^{k}(\hat{\boldsymbol{s}})$
$s=4 m^{2}$ (2-particle threshold): $\quad M_{n}(\epsilon, \hat{s}=4)=\sum_{i=-3}^{\infty} \sum_{j=-s_{\min }}^{j_{\text {max }}} \sum_{k=0}^{i+3} c_{i j k}^{(n)} \epsilon^{i}[\sqrt{4-\hat{s}}]^{j} \ln ^{k}(\sqrt{4-\hat{s}})$
$s=16 m^{2}$ (4-particle threshold): $\quad M_{n}(\epsilon, \hat{s}=16)=\sum_{i=-3}^{\infty} \sum_{j=-s_{\min }}^{j_{\max }} \sum_{k=0}^{i+3} c_{i j k}^{(n)} \epsilon^{i}[\sqrt{16-\hat{s}}]^{j} \ln ^{k}(\sqrt{16-\hat{s}})$

Series expansions

- Different ansätze for different points:
regular point: $\quad M_{n}\left(\epsilon, \hat{s}=\hat{s}_{0}\right)=\sum_{i=-3}^{\infty} \sum_{j=0}^{j_{\text {max }}} c_{i j}^{(n)} \epsilon^{i}\left(\hat{s}-\hat{s}_{0}\right)^{j}$
$s= \pm \infty$ (high-energy limit): $\quad M_{n}(\epsilon, \hat{s} \rightarrow \pm \infty)=\sum_{i=-3}^{\infty} \sum_{j=-s_{\min }}^{j_{\max }} \sum_{k=0}^{i+6} c_{i j k}^{(n)} \epsilon^{i} \hat{s}^{-j} \ln ^{k}(\hat{s})$
$s=4 m^{2}$ (2-particle threshold): $\quad M_{n}(\epsilon, \hat{s}=4)=\sum_{i=-3}^{\infty} \sum_{j=-s_{\min }}^{j_{\text {max }}} \sum_{k=0}^{i+3} c_{i j k}^{(n)} \epsilon^{i}[\sqrt{4-\hat{s}}]^{j} \ln ^{k}(\sqrt{4-\hat{s}})$
$s=16 m^{2}$ (4-particle threshold): $\quad M_{n}(\epsilon, \hat{s}=16)=\sum_{i=-3}^{\infty} \sum_{j=-s_{\min }}^{j_{\max }} \sum_{k=0}^{i+3} c_{i j k}^{(n)} \epsilon^{i}[\sqrt{16-\hat{s}}]^{j} \ln ^{k}(\sqrt{16-\hat{s}})$
- We construct expansions up to $j_{\max }=50$ around

$$
\begin{aligned}
\hat{s}= & \{-\infty,-32,-28,-24,-16,-12,-8,-4,0,1,2,5 / 2,3,7 / 2,4, \\
& 9 / 2,5,6,7,8,10,12,14,15,16,17,19,22,28,40\}
\end{aligned}
$$

and similar for the n_{h}-singlet contributions

Calculation of boundary conditions $-n_{h}$-singlets

- The singlet diagrams can have massless cuts, therefore the limit $\hat{s} \rightarrow 0$ demands an asymptotic expansion.
- We reveal regions with ASY.m [Smirnov, Pak 2010; Jantzen, Smirnov, Smirnov 2012] $(y=\sqrt{-\hat{s}})$:
$\checkmark y^{-0 \epsilon}$: taylor expansion of the integrand, same as for the non-singlet
$\checkmark y^{-2 \epsilon}$: integrals can be performed for general ϵ in terms of Γ functions
$\checkmark y^{-4 \epsilon}$: one integral was calculated using HyperInt [Panzer 2014]
\Rightarrow We obtain analytic boundary conditions in the limit $\hat{s} \rightarrow 0$.

Calculation of boundary conditions $-n_{1}$-singlets

- The singlet diagrams can have massless cuts, therefore the limit $\hat{s} \rightarrow 0$ demands an asymptotic expansion.
- We reveal regions with ASY.m [Smirnov, Pak 2010; Jantzen, Smirnov, Smirnov 2012] $(y=\sqrt{-\hat{s}})$:
$\checkmark y^{-0 \epsilon}$: taylor expansion of the integrand, same as for the non-singlet
$\checkmark y^{-2 \epsilon}$: integrals can be performed for general ϵ in terms of Γ functions
$\checkmark y^{-4 \epsilon}$: integrals can be performed with HyperInt and Mellin-Barnes methods
$x y^{-6 \epsilon}$: direct integration for some integrals quite involved
\Rightarrow For the n_{l}-singlets we changed strategy and calculated the masters at $\hat{s}=-1$ with AMFLow [Liu, Ma 2022] and matched from there.

Moebius Transformations

- The radius of convergence is at most the distance to the closest singularity.
- We can extend the radius of convergence by changing to a new expansion variable.
- If we want to expand around the point x_{k} with the closest singularities at x_{k-1} and x_{k+1}, we can use:

$$
y_{k}=\frac{\left(x-x_{k}\right)\left(x_{k+1}-x_{k-1}\right)}{\left(x-x_{k+1}\right)\left(x_{k-1}-x_{k}\right)+\left(x-x_{k-1}\right)\left(x_{k+1}-x_{k}\right)}
$$

- The variable change maps $\left\{x_{k-1}, x_{k}, x_{k+1}\right\} \rightarrow\{-1,0,1\}$.

Renormalization and infrared structure

UV renormalization

- $\overline{\mathrm{MS}}$ renormalization of α_{s}
- On-shell renormalization of mass $Z_{m}^{\text {OS }}$, wave function $Z_{2}^{\text {OS }}$, and (if needed) currents [Chetyrkin, Steinhauser 1999; Melnikov, van Ritbergen 2000]
- Much more involved renormalization for the axial and pseudoscalar singlet contributions IR subtraction
- Structure of infrared poles given by cusp anomalous dimension $\Gamma_{\text {cusp }}$ [Grozin, Henn, Korchemski, Marquard 2014]
- Define finite form factors $F=Z_{\mathrm{IR}} F^{\text {finite }}$ with UV-renormalized form factor F and

$$
Z_{\mathrm{IR}}=1-\frac{\alpha_{s}}{\pi} \frac{1}{2 \epsilon} \Gamma_{\text {cusp }}^{(1)}-\left(\frac{\alpha_{s}}{\pi}\right)^{2}\left(\frac{\cdots}{\epsilon^{2}}+\frac{1}{4 \epsilon} \Gamma_{\text {cusp }}^{(2)}\right)-\left(\frac{\alpha_{s}}{\pi}\right)^{3}\left(\frac{\cdots}{\epsilon^{3}}+\frac{\cdots}{\epsilon^{2}}+\frac{1}{6 \epsilon} \Gamma_{\text {cusp }}^{(3)}\right)
$$

- $\Gamma_{\text {cusp }}=\Gamma_{\text {cusp }}(x)$ depends on kinematics
- $\Gamma_{\text {cusp }}$ universal for all currents

Treatment of γ_{5}

Kar|sruhe Institute of Technology

- For non-singlet diagrams always an even number of γ_{5} matrices appear on a fermion line. \Rightarrow Use anti-commuting γ_{5}.
- In the singlet diagrams odd numbers of γ_{5} appear on a fermion line.
\Rightarrow Use Larin's prescription [Larin 1992] :

$$
\gamma_{\mu} \gamma_{5} \rightarrow \frac{1}{3!} \epsilon_{\mu \nu \rho \sigma} \gamma^{\nu} \gamma^{\rho} \gamma^{\sigma}
$$

where the contraction of two ϵ tensors is done in $d=4-2 \epsilon$ dimensions.
\checkmark Finite (multiplicative) renormalization constants for all currents are known.

- Only the sum of singlet and non-singlet diagrams renormalizes multiplicative, so the non-singlet has to be calculated in the Larin scheme as well (we use this as a cross-check).

Chiral Ward identity

- The non-renormalization of the Adler-Bell-Jackiw (ABJ) anomaly implies:

$$
\left(\partial^{\mu} j_{\mu}^{a}\right)_{\mathrm{R}}=2\left(j^{p}\right)_{\mathrm{R}}+\frac{\alpha_{s}}{4 \pi} T_{F}(G \tilde{G})_{\mathrm{R}}
$$

with the pseudoscalar gluonic operator $G \tilde{G}=\epsilon_{\mu \nu \rho \sigma} G^{a, \mu \nu} G^{a, \rho \sigma}$

- This relation can be used to check the correct treatment of γ_{5}.
- For the form factors this leads to the identity:

$$
F_{\text {sing }, 1}^{a, f}+\frac{s}{4 m^{2}} F_{\text {sing }, 2}^{a, f}=F_{\text {sing }}^{p, f}+\frac{\alpha_{s}}{4 \pi} T_{F} F_{G \tilde{G}}^{f}
$$

- We calculated the form factor associated to $\mathcal{G} \tilde{G}$ up to $\mathcal{O}\left(\alpha_{s}^{2}\right)$ for this check. Institute for Theoretical Particle Physics and

Chiral Ward identity

- The new topologies introduce 3 (1), 24 (15) master integrals (new wrt. the form factor calculation).
- We calculate the masters by the algorithm outlined in [Ablinger, Blümlein, Marquard, Rana, Schneider 2018]:
(1) Uncouple coupled blocks of the differential equation into a higher order one with OreSys [Gerhold 2002] and Sigma [Schneider 2007].
(2) Solve the higher order differential equations via the factorization of the differential operator with HarmonicSums [Ablinger 2011-].
(3) The boundary conditions can be found by direct integration in the asymptotic limit $\hat{s} \rightarrow 0$.
- We can express the result up to $\mathcal{O}\left(\alpha_{s}^{2}\right)$ in terms of harmonic polylogarithms.
[Remiddi, Vermseren 1999]

Results - threshold expansion around $s=4 m^{2}$

Karlsruhe Institute of Technology

- Close to threshold we can construct cross-sections and decay rates like

$$
\sigma\left(e^{+} e^{-} \rightarrow Q \bar{Q}\right)=\sigma_{0} \beta \underbrace{\left(\left|F_{1}^{v}+F_{2}^{v}\right|^{2}+\frac{\left|\left(1-\beta^{2}\right) F_{1}^{v}+F_{2}^{v}\right|^{2}}{2\left(1-\beta^{2}\right)}\right)}_{=3 / 2 \Delta^{v}}
$$

with the quark velocity $\beta=\sqrt{1-4 m^{2} / s}$

- Real radiation suppressed by β^{3}
\Rightarrow Direct phenomenological relevance
- We find (with $I_{2 \beta}=\ln (2 \beta)$)

$$
\begin{aligned}
\Delta^{v,(3)}= & C_{F}^{3}\left[-\frac{32.470}{\beta^{2}}+\frac{1}{\beta}\left(14.998-32.470 I_{2 \beta}\right)\right]+C_{A}^{2} C_{F} \frac{1}{\beta}\left[16.586 l_{2 \beta}^{2}-22.572 I_{2 \beta}+42.936\right] \\
& +C_{A} C_{F}^{2}\left[\frac{1}{\beta^{2}}\left(-29.764 I_{2 \beta}-7.7703\right)+\frac{1}{\beta}\left(-12.516 l_{2 \beta}-11.435\right)\right] \\
& +\mathcal{O}\left(\beta^{0}\right)+\text { fermionic contributions }
\end{aligned}
$$

- Agrees with dedicated calculation [Kiyo, Maier, Maierhöfer, Marquard 2009]

