WP3: processes with hadrons

Summary of WorkStop / ThinkStart discussions

Peter Stoffer Physik-Institut, University of Zurich and Paul Scherrer Institut

June 8, 2023

5th Workstop / Thinkstart: RC and MC tools for Strong 2020

- 1 Hadron dynamics and radiative corrections
- 2 Two-pion channel
- 3 Three-pion channel
- 4 Phokhara and other MCs
- 5 Relevant improvements to $e^+e^- \rightarrow$ hadrons?

1 Hadron dynamics and radiative corrections

2 Two-pion channel

- 3 Three-pion channel
- 4 Phokhara and other MCs
- 5 Relevant improvements to $e^+e^- \rightarrow$ hadrons?

Processes with hadrons

Processes with hadrons

Hadronic vacuum polarization in muon g-2

importance of different channels: \rightarrow White Paper (2020)

- 2π: 73% of total HVP
- 3π : 7% of total HVP
- 2K: 5% of total HVP
- $> 1.8 \,\text{GeV}$ (without $\bar{c}c$): 7% of total HVP

How to calculate radiative corrections in the context of non-perturbative strong interaction?

- lattice QCD: limited access to timelike region
- chiral perturbation theory (χ PT): limited to energies $\ll 4\pi F_{\pi} \sim 1 \text{ GeV}$, poorly known LECs
- models: no systematic error estimate; e.g., sQED ⊂ χPT, resonance chiral theory, ...
- **dispersion relations**, based on unitarity/analyticity: truncation of infinite sum in unitarity relation
- for pions, FsQED may appear in dispersion relations as (leading) pole term (process dependent statement)

Dispersion relations: example $\gamma^* \gamma^* \rightarrow \pi^+ \pi^-$

 \rightarrow Colangelo, Hoferichter, Procura, Stoffer (2015), Hoferichter, Stoffer (2019)

pole term = FsQED

Hadron dynamics and radiative corrections

2 Two-pion channel

- 3 Three-pion channel
- 4 Phokhara and other MCs
- 5 Relevant improvements to $e^+e^- \rightarrow$ hadrons?

Forward-backward asymmetry

→ Colangelo, Hoferichter, Monnard, Ruiz de Elvira (2022)

 \rightarrow Ignatov, Lee (2022), talk by F. Ignatov

Dispersive approach to isospin corrections in $\pi\pi$ scattering and $F_\pi^V \to {\rm talk} \; {\rm by \; G. \; Colangelo}$

 \rightarrow G. Colangelo, M. Cottini, J. Monnard, J. Ruiz de Elvira, work in progress

- pion-mass difference in Roy equations
- photonic corrections (real + virtual) to ππ scattering and pion vector form factor

Dispersive approach to isospin corrections in $\pi\pi$ scattering and $F_\pi^V \to {\rm talk} \; {\rm by \; G. \; Colangelo}$

 \rightarrow G. Colangelo, M. Cottini, J. Monnard, J. Ruiz de Elvira, work in progress

 \rightarrow J. Monnard, PhD thesis (2021)

- Hadron dynamics and radiative corrections
- 2 Two-pion channel
- 3 Three-pion channel
- 4 Phokhara and other MCs
- 5 Relevant improvements to $e^+e^- \rightarrow$ hadrons?

Dispersive approach to radiative corrections to $\gamma^* \to 3\pi$ \to talk by B. Kubis

- \rightarrow M. Hoferichter, B.-L. Hoid, B. Kubis, D. Schuh, work in progress
- second-largest channel after $\pi\pi$
- odd intrinsic parity: not part of sQED
- correction factor $1 + \frac{\alpha}{\pi}\eta_{2\pi}(s)$ applied to 2π subsystem in Khuri–Treiman representation
- 3π correction factor defined via

$$\frac{\sigma_{3\pi(\gamma)}(q^2)}{\sigma_{3\pi}^0(q^2)} =: 1 + \frac{\alpha}{\pi} \eta_{3\pi}(q^2)$$

Dispersive approach to radiative corrections to $\gamma^* \to 3\pi$

- \rightarrow talk by B. Kubis
- \rightarrow M. Hoferichter, B.-L. Hoid, B. Kubis, D. Schuh, work in progress

- 1 Hadron dynamics and radiative corrections
- 2 Two-pion channel
- 3 Three-pion channel
- 4 Phokhara and other MCs
- 5 Relevant improvements to $e^+e^- \rightarrow$ hadrons?

$Comparison \ of \ MCs \ \rightarrow \ \text{talks by H. Czyz and F. Ignatov}$

- ISR experiments: PHOKHARA
 - FSR from pointlike pions
 - boxes, pentagons with vector form factor *outside* loop integral
- direct scan experiments: MCGPJ
 - FSR from pointlike pions
 - box diagrams for asymmetry with vector form factor inside loop

- Hadron dynamics and radiative corrections
- 2 Two-pion channel
- 3 Three-pion channel
- 4 Phokhara and other MCs
- 5 Relevant improvements to $e^+e^- \rightarrow$ hadrons?

Direct scan experiments: LO

Direct scan experiments: NLO

ISR experiments: LO

ISR experiments: NLO (omitting pure QED corrections to LO)

contributes only to asymmetry

ISR experiments: NLO (omitting pure QED corrections to LO)

PHOKHARA: sQED + resonance approximations dispersive approach by Colangelo et al.

contained in PHOKHARA pure FSR: sufficiently suppressed by experimental cuts?

???

PHOKHARA: sQED, multiplied by form factors *outside* loop ISR–FSR interference potential red flag identified during WorkStop

5

- 1 Hadron dynamics and radiative corrections
- 2 Two-pion channel
- 3 Three-pion channel
- 4 Phokhara and other MCs
- 5 Relevant improvements to $e^+e^- \rightarrow$ hadrons?

Summary and outlook

- on hadronic side: require improvements in structure-dependent NLO effects
- recent progress on contributions to asymmetry, ongoing work on 2π and 3π channels
- NNLO probably science fiction; not clear that NNLO on hadronic side in some approximation (sQED) should be of any relevance