

Radiative corrections and MC tools for low-energy hadronic cross sections in e^+e^- collisions

Theoretical MUonE

Marco Rocco

Paul Scherrer Institut

 9^{th} June 2023

[Broggio, Engel, Ferroglia, Mandal, Mastrolia, 📽 Ronca, Rocco, Signer, Torres Bobadilla, Ulrich, Zoller]

lorl

Based on 2212.06481

M. Rocco, 09.06.23 - p.1/14

higher-order predictions and comparison with precision experiments
 focus on low-energy QED scattering processes
 theoretical background for lepton experiments (Mu3e, MUSE, MUonE...)
 all this in

MCMULE

Monte Carlo for MUons and other LEptons https://mule-tools.gitlab.io/

◊ fully-differential Monte Carlo integrator, not an event generator (yet)

- MUonE's signal is $\sim 10^{-3}$ \rightarrow at least 10 ppm precision
- require excellent control on background
- read: higher-order QED corrections to $e \mu$ scattering
- probably something more: resummation, PS...

[mules by A. Signer]

- steal QCD@LHC techniques
 - ◊ dim.reg.
 - ◊ MIs, automation, EFT
 - subtraction method
 - $\diamond~$ (future) match FO w/ PS
- realise massive fermions yield simpler IR structure but harder loop amplitudes and log-enhanc.
- let the mule trot [McMule 20, 22]

- *photonic* and *fermionic* corrections
- photonic are split into three parts at NNLO:

$$d\sigma^{(2)} = \int d\Phi_n \,\mathcal{M}_n^{(2)} + \int d\Phi_{n+1} \,\mathcal{M}_{n+1}^{(1)} + \int d\Phi_{n+2} \,\mathcal{M}_{n+2}^{(0)}$$

• for each part identify gauge-invariant subsets based on lepton charges (q for electron, Q for muon)

$$\diamond \ q^{6} \ Q^{2} :: \ electronic \qquad \underbrace{\overset{P^{N_{2}}}{\underbrace{\overbrace{}}} \quad \underbrace{P^{N_{2}}}{\underbrace{\overbrace{}}} \quad \underbrace{P^{N_{2}}}} \quad \underbrace{\overset{P^{N_{2}}}{\underbrace{\overbrace{}}} \quad \underbrace{P^{N_{2}}} \quad \underbrace{P^{N_{2}}}{\underbrace{\overbrace{}} \quad \underbrace{P^{N_{2}}}} \quad \underbrace{P^{N_{2}}} \quad \underbrace{P^{N_{2}}} \atop \underbrace{P^{N_{2}}} \quad \underbrace{P^{N_{2}}} \quad \underbrace{P^{N_{2}}} \atop \underbrace{P^{N_{2}}} \quad \underbrace{P^{N_{2}}} \atop \underbrace{P^{N_{2}}} \quad \underbrace{P^{N_{2}}} \atop \underbrace{P^{N_{2}}} \atop \underbrace{P^{N_{2}}} \atop P^{N_{2}} \atop P^{N_{2}} \\ P^{N_{2}}} \underbrace{P^{N_{2}}} \atop P^{N_{2}} \underbrace{P^{N_{2}}} \atopP^{N_{2}} \underbrace{P^{N_{2}}} \atopP^{N_{2}} \atopP^{N_{2}} \underbrace{P^{N_{2}}} \atopP^{N_{2}} \underbrace{P^{N_{2}}} \atopP^{N_{2}} \underbrace{P^{N_{2}}}} \underbrace{P^{N_{2}}} \underbrace{P^{N_{2}}} P^{N_{2}} \underbrace{P^{N_{2}}}} \underbrace{P^{N_{2}} P^{N_{2}}} \underbrace{P^{N_{2}}} \underbrace{P^{N_{2}}} P^{N_{2}} \underbrace{P^{N_{2}}} P^{N_{2}} \underbrace{P^{N_{2}}} \underbrace{P^{N_{2}} P^{N_{2}} \underbrace{P^{N_{2}} P^{N_{2}} P^{N_{2}}} \underbrace{P^{N_{2}}} \underbrace{P^{N_{2}}} \underbrace{P^{N_{2}} P^{N_{2}}} \underbrace{P^{N_{2}} P^{N_{2}}} \underbrace{P^{N_{2}} P^{N_{2}} \underbrace{P^{N_{2}} P^{N_{2}} P^{N_{2}} \underbrace{P^{N_{2}} P^{N_{2}}} P^{N_{2}} \underbrace{P^{N_{2}$$

full muone 2-loop amplitude with $M \neq 0$, $m = 0 \rightarrow {}_{\rm [Bonciani\ et\ al.\ 21]}$

full muone 2-loop amplitude with $M \neq 0, \, m \neq 0 \rightarrow \ensuremath{\left[m\right]}$

- $\rightarrow\,$ exploit scale hierarchy $m^2 \ll M^2, Q^2$
- $\diamond \text{ massification: } \mathcal{A}_{\mu e}(m) = \mathcal{S}' \times Z \times Z \times \mathcal{A}_{\mu e}(0) + \mathcal{O}(m)$

[Penin 06, Becher, Melnikov 07; Engel, Gnendiger, Signer, Ulrich 18]

OpenLoops [Buccioni, Pozzorini, Zoller 18, Buccioni et al. 19] LBK theorem [LBK 58-61, Engel, Signer, Ulrich 21, Engel 23]

$$\sum_{i=1}^{\delta} \mathcal{E}_{\gamma \to 0} \mathcal{E} + \left(D_{\mathsf{LBK}} + \mathcal{S} \right) + \mathcal{O}(E_{\gamma}^{0})$$

 \diamond introduce NTS stabilisation [McMule 21, 22]

M. Rocco, 09.06.23 - p.6/14

M. Rocco, 09.06.23 - p.7/14

 $\mu e \rightarrow \mu e \quad @ \text{ NNLO}$

• kinematical setup mimics MUonE:

$$E_{\mu,i} = 160 \,\text{GeV}$$
 $E_{e,f} > 1 \,\text{GeV}$ $\theta_{\mu,f} > 0.3 \,\text{mrad}$

- results for different kinematical scenarios and any IR safe observable
- no mass is neglected

M. Rocco, 09.06.23 - p.9/14

M. Rocco, 09.06.23 - p.9/14

M. Rocco, 09.06.23 - p.9/14

how to handle hard radiation?

• elasticity veto!
$$\rightarrow 0.9 < \frac{\theta_{\mu,f}}{\theta_{\mu,f}^{el}} < 1.1$$
 (S2)

• . . .

M. Rocco, 09.06.23 - p.10/14

M. Rocco, 09.06.23 - p.11/14

M. Rocco, 09.06.23 - p.11/14

M. Rocco, 09.06.23 - p.13/14

first NNLO with different external masses [2212.06481] recision now $\mathcal{O}(10^{-3/-4})$, would like (need) to reach more stay tuned for mule updates after the workstop!

 $(\mathsf{FKS}^{\ell} + \mathsf{DIMREG}) \text{ vs (slicing } + m_{\gamma})$

 $e\,\mu
ightarrow e\,\mu\,\gamma$ @ NLO with $\xi_c=\omega_s=10^{-\{6,5,4\}}$ (Mesmer as in [Carloni et al. 20])

M. Rocco, 09.06.23 - p.16/14

M. Rocco, 09.06.23 - p.17/14

total cross sections

	$\sigma/\mu{ m b}$		$\delta K^{(i)}/\%$	
	S1	S2	S1	S2
σ_0	106.44356	106.44356		
$\sigma_1 \left\{ \begin{smallmatrix} - \\ + \end{smallmatrix} ight\}$	106.99038(3)	102.86304(3)	0.51372(3)	-3.36377(3)
	107.41847(3)	103.18338(3)	0.91589(3)	-3.06283(3)
$\sigma_e^{(2)}$	0.00090	0.06595	0.00084	0.06411
$\sigma^{(2)}_{e\mu} \left\{ { \atop + }^- \right.$	0.00097(1)	0.01926	0.00091(1)	0.01872
	0.00328(1)	-0.01768	0.00305(1)	-0.01713
$\sigma_{\mu}^{(2)}$	-0.00005	0.00002	-0.00005	0.00002
$\sigma^{(2)}_{\rm lep} \left\{ {-\atop +} \right.$	-0.01195	-0.06568	-0.01117	-0.06385
	-0.00424	-0.05959	-0.00395	-0.05775
$\sigma^{(2)}_{\rm had} \Big\{^+$	-0.00045	-0.00104	-0.00042	-0.00101
	-0.00004	-0.00068	-0.00004	-0.00066
$\sigma_2 \left\{ \begin{smallmatrix} - \\ + \end{smallmatrix} \right\}$	106.97977(3)	102.88154(3)	-0.00992(4)	0.01799(4)
	107.41832(3)	103.19386(3)	-0.00013(4)	-0.01016(4)

M. Rocco, 09.06.23 - p.18/14

M. Rocco, 09.06.23 - p.19/14

M. Rocco, 09.06.23 - p.20/14