

EDM: coupling between spin and E-field

If $d_n \neq 0$ the process and its time reversed version are different.

Violation of T CPT Violation of CP

The neutron EDM is still zero

Best limit: nEDM @PSI Abel et al, PRL 124, 081803 (2020) $|d_n| < 1.8 \times 10^{-26} \, e \, \mathrm{cm}$

Design sensitivity range of 4 experiments
n2EDM @PSI, panEDM @ILL, LANL EDM, tucan @TRIUMF
under construction now

Design sensitivity EDM@SNS, starting 2028

CKM background uncertain, possibly 10^{-31} e cm

Basics of nEDM measurement

If $d_n = 10^{-26} e \text{ cm}$ and E = 11 kV/cm one full turn in a time

$$\frac{\pi h}{dE}$$
 = 200 days

To detect such a minuscule coupling

- Long interaction time
- High intensity/statistics
- Control the magnetic field

- Long interaction time
- High intensity/statistics
- Control the magnetic field

Use Ultracold neutrons

Neutrons with velocity <5m/s can undergo total reflection and be stored in material "bottles"

Use big magnetic shielding

+ Use quantum magnetometry With mercury and cesium atoms

$$d_n = (0.0 \pm 1.1_{\text{stat}} \pm 0.2_{\text{syst}}) \times 10^{-26} \text{ ecm}$$

Limited by the number of UCNs

Uniformity of the B-field

The design of the n2EDM experiment, Ayres et al, EPJC (2021)

Baseline design

	nEDM 2016	n2EDM
Chamber	DLC and dPS	DLC and dPS
Diameter D	47 cm	80 cm
N (per cycle)	15,000	121,000
T	180 s	180 s
E	11 kV/cm	15 kV/cm
α	0.75	0.8
$\sigma(f_n)$ per cycle	9.6 μHz	$3.2\mu Hz$
$\sigma(d_n)$ per day	$11 \times 10^{-26} e \text{ cm}$	$2.6 \times 10^{-26} e \text{ cm}$
$\sigma(d_n)$ (final)	$9.5 \times 10^{-27} e \text{ cm}$	$1.1 \times 10^{-27} e \text{ cm}$

n2EDM designed to improve the sensitivity by factor 10, with 500 data days, based on UCN source performance established in 2016

Commissioning of the n2EDM Magnetically Shielded Room in 2020

- Setup and optimization of the degaussing
- · Characterization of the remanent field
- Measurement of the shielding factors

The very large n2EDM magnetically shielded room with an exceptional performance for fundamental physics measurements,

Review of Scientific Instruments 93, 095105 (2022)

9/16

Active Magnetic Shield built in 2021

Installation internal coil system

n2EDM in 2021

Delivery non-magnetic vacuum vessel

B-field mapping campaign 2022

Installation of the mapper in the empty vacuum vessel

Uniformity of the vertical B-field

nEDM 2017 $\sigma(B_Z)=860~\mathrm{pT}$ In the precession chamber Ø 47 cm

n2EDM 2022 $\sigma(B_Z)=60~\mathrm{pT}$ In one chamber Ø 80 cm $_{13/16}$

Production precession chambers

Ground electrodes

High voltage electrode

Insulator ring

UCN transport and detection

UCN switch nearly operational

4 UCN detectors operational

Conclusions

n2EDM magnetically operational (MSR+BO)

- Big volume: 6 fold increased /nEDM
- Order of magnitude improved shielding factor
- Order of magnitude improved uniformity
- => Satisfies the requirements => Ready for physics!

Ultracold neutrons transport, storage, detection: most of it is ready for installation

Schedule: n2EDM ready for physics end of 2023

