The LAMBDA photon counting pixel detector with germanium sensor

David Pennicard, Sabine Lange, Sergej Smoljanin, Helmut Hirseemann, Heinz Graafsma - DESY
Michael Epple - Technical University of Munich
Milan Zuvic, Marie-Odile Lampert - Canberra France Speciality Detectors
Thomas Fritzsch, Mario Rothermund – Fraunhofer IZM
LAMBDA and germanium sensors

- Large Area Medipix-Based Detector Array
 - Photon-counting system based on Medipix3 chip
- High-Z pixel detector development
 - Germanium detector project with Canberra and Fraunhofer IZM
Experiments at PETRA-III

> 6 GeV source with low emittance (1 nmrad)
 - Nanofocusing, high-resolution, coherence…
 - Hard X-rays (>20 keV)

> 14 beamlines
 - 8 in user operation

> 2 extensions planned
 - Replacement for DORIS-III
 - 10 beamlines
 - Higher flux
Large Area Medipix-Based Detector Array

- Photon-counting detector
- Small pixel size (55µm)
- Large, tilable modules (1536 by 512 pixels)
- Fast readout (2 kHz+)
- High-Z compatible
 - inc. germanium cooling
Medipix3 readout chip

- CERN-led collaboration
- 256 by 256 array of 55µm pixels
- 2 counters / pixel for continuous read-write
 - 2000 fps at 12 bit depth
 - 6 (4) and 1 bit also possible
- Interpixel communication – avoids hit loss & double counting, better discrimination
- Medipix3 “RX”
 - First silicon assemblies received at CERN
 - CRW and interpixel communication fixed
 - Stability and pixel-to-pixel uniformity as designed
Detector head

- 6 by 2 chips (1536 by 512 pixels)
 - Large Si sensor
 - 300µm Si sensor here
 - 2 x “Hexa” high-Z sensors

- Ceramic circuit board (LTCC)
 - 14 layer board
 - Good match to germanium CTE
 - Cooling through thermal vias

- 500-pin connector on board
 - Full parallel readout (8 LVDS data outputs per chip)
 - ~150 LVDS pairs total
Detector head

> 6 by 2 chips (1536 by 512 pixels)
 - Large Si sensor
 - 300µm Si sensor here
 - 2 x “Hexa” high-Z sensors

> Ceramic circuit board (LTCC)
 - 14 layer board
 - Good match to germanium CTE
 - Cooling through thermal vias

> 500-pin connector on board
 - Full parallel readout (8 LVDS data outputs per chip)
 - ~150 LVDS pairs total
High-speed readout system

> Previously developed prototype system (USB2 readout only)

> High-speed readout with common DESY mezzanine card
 - Virtex-5 FPGA with PowerPC
 - 4 * 10 Gigabit Ethernet links
 - DDR2 RAM (8GB)

> “Signal distribution” board connects to det. head
 - Space for vacuum barrier with germanium detector

> Currently working on high-speed readout firmware
High-speed readout system

> Previously developed prototype system (USB2 readout only)

> High-speed readout with common DESY mezzanine card
 - Virtex-5 FPGA with PowerPC
 - 4 * 10 Gigabit Ethernet links
 - DDR2 RAM (8GB)

> “Signal distribution” board connects to det. head
 - Space for vacuum barrier with germanium detector

> Currently working on high-speed readout firmware

Cooler

Readout passes though vacuum barrier

Vacuum chamber with window
Test results with Si module

First full Si module assembled (300µm sensor from Canberra)

- All 12 chips successfully bonded (by IZM) and functional
- 1280 digitally bad pixels, 15 noisy, 700 insensitive – 0.25%
 - Digitally bad pixels: 5 columns in bottom-right corner
 - This was first module bonded – IZM expect improvement of remainder

Flat-field corrected image, Mo X-ray tube, 40kV
Test results with Si module
LAMBDA and germanium sensors

> Large Area Medipix-Based Detector Array
 - Photon-counting system based on Medipix3 chip

> High-Z pixel detector development
 - Germanium detector project with Canberra and Fraunhofer IZM
High-Z development

- Germanium – Canberra France Speciality Detectors, Fraunhofer IZM
- Gallium Arsenide – Galapad project – RID Ltd. (Tomsk), JINR (Dubna), FMF (Freiburg), KIT (Karlsruhe),
- Cadmium telluride – HiZPAD collaboration – Acrorad sensors, FMF bonding
High-Z development

- Germanium – Canberra France Speciality Detectors, Fraunhofer IZM

- **Gallium Arsenide** – Galapad project – RID Ltd. (Tomsk), JINR (Dubna), FMF (Freiburg), KIT (Karlsruhe),

- Cadmium telluride – HiZPAD collaboration – Acrorad sensors, FMF bonding

GaAs bonded to Timepix (25keV)

Flat-field corrected image

Thanks to Simon Procz, Alex Fauler and Michael Fiederle (FMF / University of Freiburg)
High-Z development

- Germanium – Canberra France Speciality Detectors, Fraunhofer IZM
- Gallium Arsenide – Galapad project – RID Ltd. (Tomsk), JINR (Dubna), FMF (Freiburg), KIT (Karlsruhe),
- **Cadmium telluride** – HiZPAD collaboration – Acrorad sensors, FMF bonding

Scattering from LiMnPO$_4$ at DORIS BW5 (100keV)
Germanium pixel detector

Canberra (Lingolsheim): M Lampert, M Zuvic, J Beau

Fraunhofer IZM (Berlin): T Fritzsch, M Rothermund, H Oppermann, O Ehrmann

> High-purity, high uniformity 90 mm Ge wafers available

> Cooled operation needed to reduce leakage current
 - Must avoid saturation & excessive noise in amplifier
 - Est. \(-70^\circ\text{C}\) operation with Medipix3 (small pixel, leakage tolerant design)
 - Measured transport and depletion fine at this temperature

> Lambda module designed to be cooled

> Fine pixellation and bump-bonding must be developed
Sensor production and bump bonding

- **Detector structure (Canberra)**
 - Modification of existing strip detector technology
 - 55µm pixels, 600 µm thick
 - Electron readout

- **Indium bump bonding (IZM)**
 - Sensor and ROC bonded at < 100C temp
 - During cooling, ductility of In compensates for mismatch in contraction
 - Process and temperature optimised using Ge diodes
 - Bond height and flip-chip optimised with mechanical dummies
Sensors

- 2 high purity Ge wafers produced by Canberra
 - 16 Medipix3 singles / wafer
- First 2 assemblies bonded last week
Preliminary test results

> Tested in vacuum chamber with Cryotiger cooler at **-70°C**
 - Need to improve isolation – cooler should be able to go much lower!

> Guard ring current high – tested at 50V (~2.5mA current)
 - No breakdown, but reaches source limit
 - Temp dependent

> Mini Ag-target X-ray tube used (50kV)

> Not yet equalised
 - Medipix 3.0 has large dispersion!
 - Look at single pixel spectra
Preliminary test results

Preliminary threshold scans made on unequalised detector

- Signal seen in majority of pixels, but some regions are insensitive (particularly edges)
- Spectrum shows large charge sharing, as expected (charge summing in Medipix3 not used in these tests)
Preliminary test results

- First sensors showed some delamination of metallization after flip chip
- However, delamination doesn’t appear to affect result
Effects of chip settings

> Leakage current compensation limited by Ikrum setting

- Current setting $\sim 10 \text{nA} / \text{pixel}$

Medipix3 preamplifier circuit

Bipolar discharge circuit

Leakage compensation circuit

Rafael Ballabriga Suñé, CERN Thesis 2010-055
Effects of chip settings

- Insensitive blobs / edges worsen with low Ikrum
 - Implies pixels are saturated with leakage current
 - Performance should improve with deeper cooling (say -100C)

Signal in Ge sensor, Ag tube (50kV), Ikrum 160

Signal in Ge sensor, Ag tube (50kV), Ikrum 40
Summary

➢ Goal: Flexible photon-counting detector for PETRA-III
➢ First silicon detector modules working
➢ High-speed readout in progress
➢ Prototype germanium sensor sees X-rays
 ▪ Full characterisation needed (including lower T performance)
 ▪ Also need to test other chips in batch