Silicon-On-Insulator Photon-Imaging Array Sensor (SOPHIAS) for X-ray Free-Electron Laser Experiments

Takaki Hatsui
on Behalf of SOPHIAS collaboration
RIKEN SPring-8 Center
Collaborators

- **RIKEN, JASRI**
 All members of SACLA members, especially,
 Togo Kudo, Takashi Kameshima, Yoichi Kirihara, Shun Ono, Tomohiko Tatsumi, Kazuo Kobayashi, Motohiko Omodani, Kyosuke Ozaki
 Yasumasa Joti, Atsushi Tokuhisa
 Mitsuhiro Yamaga, Arnaud Amselem, Akio Kiyomichi
 Takashi Sugimoto, Toru Ohata, Toko Hirono, Masahiko Kodera, Ryotaro Tanaka, Tetsuya Ishikawa

- **Univ. of Hyogo**
 Takeo Watanabe, Tetsuo Harada, Hiroo Kinoshita

- **KEK**
 Yasuo Arai, and SOIPIX collaboration

- **Academia Sinica**
 - Minglee Chu, Chih Hsun Lin, Shih-chang Lee

- **Private Sector**
 - Yokogawa Digital Computing, sgi

- **Advisory Committee Members**
 - Peter Denes (LBNL), Yasuo Arai (KEK), Andrew Holland (The Open Univ.), and Grzegorz Deptuch (Fermilab)
(Hard) X-ray 2D Detectors for XFEL and SR

Observables
- Intensity
- Position or scattering angle
- Photon Energy (wavelength)
- Arrival Time
- …

Fast Signal Readout
- In-pixel processing
- Periphery or frontend IC processing
- Off-sensor module processing

3D photodiode by TSV
3D integration with micro bump

thick pn diode
Silicon

VLSI circuitry inside pixel

SOI Pixel Technology
Advantages Summarized by KEK

- Bonded wafer → Thick High Resistivity Sensor + CMOS
- Monolithic Detector → High Density, Low material
- Standard CMOS → Complex functions in a pixel
- No mechanical bump bonding → High yield, Low cost
- Small input capacitance → ~10fF, High conversion gain, Low noise
- Based on Industrial standard technology → Cost benefit and Scalability
- No Latch Up, Low SEE
- Low Power
- Operate in wide temperature (4-570K) range.

RIKEN joined SOIPIX collaboration from the end of 2007
2007 when RIKEN joined SOIPIX collaboration

- Back-gate effect

Handle wafer resistivity was low after CMOS process.

 - \(\sim 400 \text{ ohm/cm} \)

Small sensor chip size compared to other technology

 - 20 mm x 20 mm

Devices were for digital, not for analog circuitry.

X-ray Radiation hardness was not evaluated.
Back-gate effect

- Bias beneath of BOX layer acts as another gate
- Use for in-pixel circuit will increase the input capacitance

SOPHIS Implementation

- Peripheral circuit
 - BPW is used
- No BPW is used for in-pixel circuit
 - Design circuit taking back-gate effect into account by experiments
Critical Achievements in Process Technologies for XFEL applications
8 Inch FZ SOI wafer for full depletion of 500 um

<table>
<thead>
<tr>
<th>SOI wafer fabrication</th>
<th>Conventional Process</th>
<th>Improved Process</th>
<th>tool</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td>KLA Tencor SP-1</td>
</tr>
</tbody>
</table>

| Pixel detector fabrication | | | X-ray Topography |
|----------------------------| | | |
Critical Achievements in Process Technologies for XFEL applications
Backside processing

Backside Processing
- CMP
- Wet etching
- Implant
- Laser annealing
- Al deposition

Device Simulation Results

Inverse current

- w/o Al
- with Al

Charge

Depth from back side (um)

0.3 um

V_{in}

X-ray Detectors for Synchrotron Applications

T. Hatsui, RIKEN
◆ Stitching Sequence

◆ Mask Layout

◆ Lithography Layout

Courtesy of Lapis Semiconductor

July 6, 2012

X-ray Detectors for Synchrotron Applications

T. Hatsui, RIKEN
Stitching Process: Intermediate Observation

- Stitching Layers: guard rings, M1
- Pixel Gap by Stitching is designed to match to the pixel size of 30 um
- Stitching error in X/Y directions < 0.025 um

Courtesy of Lapis Semiconductor
Device/Process Introduction Critical for SOPHAS

- Buried Well
- MIM Cap. onto 3M
- PCell for temp. sensor/circuitry
- Diode

Introduction of I/O Tr for Vdd=2.5 V Operation

*3D view is created by google sketchup 6

Courtesy of A-R-Tec
1/f Noise Suppression

- Fully Depleted SOI Transistor (FD-SOI Tr):
 - Body Floating Tr
 - Large 1/f noise due to body floating
 - Source Tie/Body Tie Tr Pcell has been introduced.
 - 1/f noise simulation environment has been successfully introduced.

[Diagram showing different transistor configurations: Body Floating, Source Tie (Type 1), Source Tie (Type 2), Body Tie.]

Courtesy of A-R-Tec
1/f Noise: Simulation and Measurement by Test Chip

SOPHIAS

Test Chip MIVAPIX2

DN^2/Hz

10^4

10^3

10^2

0.001

0.01

0.1

Hz

64.8mm

30mm

7.5mm

15.4mm
2007 when RIKEN joined SOIPIX collaboration

Current Status
- Buried P-well proposed by KEK, and now extensively used.
- New Developments
 - Nested well proposed by Fermilab
 - Double SOI proposed by KEK
- FZ with > 3 kohm/cm
- Stitching
 - 66 mm x 30 mm achieved
 - 130 mm x 130 mm is possible
- 4M to 5M, MIM Cap onto 3M
- 1/f noise suppression by Source-tie and body-tie Tr.
- Simulation environment improvement.
- Currently upto 150 krad for Tr. → SOPHIAS is for < 7 keV with back-illumination
- Systematic study of the radiation damage has been started
 - new process,
 - prediction by radiation damaged device models

Back-gate effect
Handle wafer resistivity was low after CMOS process.
- ~400 ohm/cm

Small sensor chip size compared to other technology
- 20 mm x 20 mm

Devices were for digital, not for analog circuitry.

X-ray Radiation hardness was not evaluated.
SOPHIAS Pixel Layout by Multi-Via Concept

High gain

Low gain

Low Gain Via : 4

High Gain Via : 24

30 µm pixel

X-ray

SiO₂

Sensor

p⁺

Via

X-ray Detectors for Synchrotron Applications

T. Hatsui, RIKEN
SOPHIAS
In-pixel Schematics

Gain	Csens [fF]	Via #	Gain [uV/e]
High | 16 | 24 | 7.2
Low | 240 | 4 | 0.15
SOIPHIAS Sensor

All the Periphery Circuit \textit{incl. row registers}

- 30 mm
- 64 mm

- 3-side buttable
- 4-side buttable with steped geometry

Guard Ring
26.7 mm

64 mm

25 msec Exposure Ag 20 keV 0.2 mA
X-ray Image

2 mm
1st Submission of Full Sensor Chip
Cosmetic Quality Evaluation by Optical Light

He-Ne Laser Spot

719 x 3 = 2157 pixel (64.77 mm)

File name explanation: X-Y.bmp
- X: Shot No.
- Y: Left or Right

インピーダンスの整合をとった。
縦筋が目立たないように画像取得した。

July 6, 2012
1st Submission of Full Sensor Chip Offset Variation

Data taken by Test Camera
- Dead pixel: 0
- Readout port: 6
- Readout Speed: 25 MHz/pixel equivalent to
 60 frame/sec with off-chip Digital CDS
 120 frame/sec without off-chip digital CDS

Dead Pixel: None
Defect Pixel defined as offset > 200 meV
 ratio 2.7 x 10^-5
 53 pixels /1.9 Mpixel
1st Submission of Full Sensor Chip Gain Responsively

- Design guideline of SOPHIAS pixel
 - Calibration easy pixel
 - Identical behavior against pulse and cont. X-ray sources
 - linearity of raw signal is not mandatory

Qualitatively consistent with physical model
Calibration algorithm is now under progress
Data Processing and Detector Release

Vacuum

- **Dual-Sensor Detector**
 - Released to user operation in 2014
 - 30 frame/sec
 - 4 Mpixel

- **Multi-Sensor Detector**
 - Release target TBD
 - 60 frame/sec
 - max 80 Mpixel
 - with E/O, calibration FPGA, and CLHS

Diagram:
- Drive clocks
- 25 MSPS x 12
- 400 Mbps x 12
- 3 Gbps
- Command trigger
- CL HS
- Sensor
- ADC
- Driver
- FPGA
- O/E
- Digital CDS Calibration FPGA

July 6, 2012

X-ray Detectors for Synchrotron Applications
Current Status of SACLA Multiport CCDs

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Specification</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pixel</td>
<td>50 μm□</td>
</tr>
<tr>
<td>Peak signal</td>
<td>>4.4 Me-</td>
</tr>
<tr>
<td></td>
<td>2700 ph.@ 6 keV</td>
</tr>
<tr>
<td>Noise</td>
<td>< 300 e-rms</td>
</tr>
<tr>
<td></td>
<td>0.18 ph.@ 6 keV</td>
</tr>
<tr>
<td></td>
<td>typ. 130-240 e-rms</td>
</tr>
<tr>
<td>Pixel Number</td>
<td>1k x 512 pixels/sensor</td>
</tr>
<tr>
<td>Array</td>
<td>Currently max 8 sensor array with 4 Mpixels</td>
</tr>
<tr>
<td>Rad. Hardness</td>
<td>>1.6 x10^{14} photons/mm^2@ 12 keV</td>
</tr>
<tr>
<td>Dead Area at Edges</td>
<td>< 300 μm</td>
</tr>
<tr>
<td>Sensitive Layer</td>
<td>50 μm</td>
</tr>
<tr>
<td></td>
<td>to be upgraded to 300 μm in Phase III</td>
</tr>
</tbody>
</table>

- **2k x 2k pixels**

User Operation

- 2012A proposal
- 25 proposal selected
- More than half will use MPCCD detector
User Experiment Example
Coherent X-ray Imaging

1 um focused beam

sample Octal Single

Coutesy of Prof. Takahashi (Osaka Univ.) Dr. Yamamoto (RIKEN), and Prof. Nakasako (Keio Univ)
Future Applications

- SPring-8 II
 - Coherent flux of source
 - $\times 1000$ in 10 keV region
 - More flux increase at sample position
 - A Target Candidate
 - X-ray Photon Correlation Spectroscopy (XPCS) in nanosecond regime
 - Provisional Demands for Detectors
 - Data frame acquisition at 23.6 nsec interval, (or 1.966 nsec interval at best)

- Medical Applications
 - In collab. with Lapis Semiconductor and Rohm group.
SOI Pixel Detector
Monolithic Si Pixel Sensor with VLSI
Collaboration of KEK, and Lapis Semiconductor, and other institutions

Advantages Summarized by KEK

- Bonded wafer → Thick High Resistivity Sensor + CMOS
- Monolithic Detector → High Density, Low material
- Standard CMOS → Complex functions in a pixel
- No mechanical bump bonding → High yield, Low cost
- Small input capacitance → ~10fF, High conversion gain, Low noise
- Based on Industrial standard technology → Cost benefit and Scalability
- No Latch Up, Low SEE
- Low Power
- Operate in wide temperature (4-570K) range.

RIKEN joined SOPIX collaboration from the end of 2007

Control of charge collection
SOPHIAS

Sample Hold Electronics
With 20 ENC at close to GHz rate

Charge transimpedance amplifier is not needed. Speed and noise is not in trade-off relationship in conventional way.
Noise Performance Demonstration
SOI pixel sensor for future X-ray astronomical satellites

XRPIX

4T type Pixel, -50°C, Single Pixel CDS Readout

~20 ENC is achieved with simple 4T like pixel without CTIA

 Courtesy of Kyoto Univ.

Ryu et al. IEEE TNS Submitted (2012)
Assumed Parameter:
120 \text{um} \square \text{ pixel}, 10 \text{ bit ADC}, \text{Analog: noise 50 e- Peak 100 ke-}

Global Timing Track from upper and lower pads
→ timing delay < 1 \text{nsec}
Design optimization should be carried out.

Technology for 1 \text{nsec framing} will be in our hand.
Readout remain in 10-100 kframe/sec.
Exposure/readout ratio is low.
• Optimized operation,
• In-pixel processing
 • Custom sensor for each application
• Off-pixel processing
 • Integrate new technology, such as 3D integration
SOI Pixel Technology

- Ramping up to real scientific applications.

SOPHIAS

- Peak Signal 7 Me-, Noise 100 e-, Dual gain pixel, 30 um□ pixel, 1.9 M pixel/chip

SOPHIAS status

- Just after 1st run, Testing is underway
- Major tasks
 - Pixel-by-pixel Calibration

Release

- 2014 for Dual-Sensor Detector
- Multi-Sensor Detector is envisaged. Release date is under discussion.

After SOPHIAS

- Low input capacitance
 - Fast shutter in the nanosecond regime