

Silicon-On-Insulator Photon-Imaging Array Sensor (SOPHIAS) for X-ray Free-Electron Laser Experiments

Takaki Hatsui on Behalf of SOPHIAS collaboration RIKEN SPring-8 Center

Collaborators

RIKEN, JASRI

All members of SACLA members, especially,

<u>Togo Kudo</u>, Takashi Kameshima, <u>Yoichi Kirihara</u>, Shun Ono, <u>Tomohiko Tatsumi</u>, <u>Kazuo</u> <u>Kobayashi</u>, <u>Motohiko Omodani</u>, Kyosuke Ozaki

Yasumasa Joti, Atsushi Tokuhisa

Mitsuhiro Yamaga, Arnaud Amselem, Akio Kiyomichi

Takashi Sugimoto, Toru Ohata, Toko Hirono, Masahiko Kodera, Ryotaro Tanaka, Tetsuya Ishikawa

Univ. of Hyogo

<u>Takeo Watanabe, Tetsuo Harada, Hiroo Kinoshita</u>

KEK

Yasuo Arai, and SOIPIX collaboration

- Academia Sinica
 - Minglee Chu, Chih Hsun Lin , Shih-chang Lee
- Private Sector
 - Lapis Semiconductor, Rohm, T-Micro, <u>A-R-Tec Corp</u>., e2v plc, XCam Ltd, Meisei Electric, Kyocera, Clear Pulse Co. Ltd, Hamamatsu Photonics K.K., RIGAKU Corp.
 - Yokogawa Digital Computing, sgi
- Advisory Committee Members
 - Peter Denes (LBNL), Yasuo Arai (KEK), Andrew Holland (The Open Univ.), and Grzegorz Deptuch (Fermilab)

(Hard) X-ray 2D Detectors for XFEL and SR

July 6, 2012

SOI Pixel Detector Monolithic Si Pixel Sensor with VLSI

Collaboration of KEK, and Lapis Semiconductor, and other institutions

Advantages Summarized by KEK

- Bonded wafer → Thick High Resistivity Sensor + CMOS
- Monolithic Detector \rightarrow High Density, Low material
- Standard CMOS → Complex functions in a pixel
- No mechanical bump bonding

→ High yield, Low cost Control of charge collection SOPHIAS

Small input capacitance

 \rightarrow ~10fF, High conversion gain, Low noise

 \rightarrow Cost benefit and Scalability

- No Latch Up, Low SEE
- Low Power
- Operate in wide temperature (4-570K) range.

RIKEN joined SOIPIX collaboration from the end of 2007

Sample Hold Electronics

With 20 ENC at close to GHz rate

SOI Pixel Technology Process/Device/Simulation

2007 when RIKEN joined SOIPIX collaboration

Back-gate effect

Handle wafer resistivity was low after CMOS process.

• \sim 400 ohm/cm

Small sensor chip size compared to other technology

• 20 mm x 20 mm

Devices were for digital, not for analog circuitry.

X-ray Radiation hardness was not evaluated.

July 6, 2012

Critical Achievements in Process Technologies for XFEL applications Buried well for eliminating back-gate effects

- Back-gate effect
 - Bias beneath of BOX layer acts as another gate
 - Use for in-pixel circuit will increase the input capacitance

SOPHIAS Implementation

- Peripheral circuit
 - BPW is used
- No BPW is used for in-pixel circuit
 - Design circuit taking back-gate effect into account by experiments

July 6, 2012

Critical Achievements in Process Technologies for XFEL applications 8 Inch FZ SOI wafer for full depletion of 500 um

Conventional Process Improved Process tool water imaging the Principal Deci Weter Marite Reiner De SOI wafer **KLA** Tencor ALC: MARK fabrication SP-1 Pixel detector X-ray fabrication Topography

Courtesy of Lapis Semiconductor

Critical Achievements in Process Technologies for XFEL applications Backside processing

July 6, 2012

Backside Processing

- CMP
- Wet etching
- Implant
- Laser annealing
- Al deposition

Inverse current

Stitching Sequence

Stitching Process: Intermediate Observation

Stitching Layers: guard rings, M1
 Pixel Gap by Stitching is designed to match to the pixel size of 30 um
 Stitching error in X/Y directions < 0.025 um

RIKEN SACLA

X-ray Detectors for Synchrotron Applications

T. Hatsul, RIKEN

Device/Process Introduction Critical for SOPHAS

1/f Noise Suppression

- Fully Depleted SOI Transister (FD-SOI Tr):
 - Body Floating Tr
 - Large 1/f noise due to body floating
 - Source Tie/Body Tie Tr Pcell has been introduced.
 - 1/f noise simulation environment has been successfully introduced.

1/f Noise: Simulation and Measurement by Test Chip

SOI Pixel Technology Process/Device/Simulation

2007 when RIKEN joined SOIPIX collaboration

Back-gate effect

Handle wafer resistivity was low after CMOS process.

• \sim 400 ohm/cm

Small sensor chip size compared to other technology

• 20 mm x 20 mm

Devices were for digital, not for analog circuitry.

X-ray Radiation hardness was not evaluated.

Current Status

- Buried P-well proposed by KEK, and now extensively used.
- New Developments
 - Nested well proposed by Fermilab
 - Double SOI proposed by KEK
- FZ with > 3 kohm/cm
- Stitching
 - 66 mm x 30 mm achieved
 - 130 mm x 130 mm is possible
- 4M to 5M, MIM Cap onto 3M
- 1/f noise suppression by Source-tie and body-tie Tr.
- Simulation environment improvement.
- Currently upto 150 krad for Tr. → SOPHIAS is for < 7 keV with back-illumination
 - Systematic study of the radiation damage has been started
 - new process,
 - prediction by radiation damaged device models

July 6, 2012

SOPHIAS Pixel Layout by Multi-Via Concept

July 6, 2012

SOIPHIAS Sensor

1st Submission of Full Sensor Chip Cosmetic Quality Evaluation by Optical Light

1st Submission of Full Sensor Chip Offset Variation

1st Submission of Full Sensor Chip Gain Responsively

- Design guideline of SOPHIAS pixel
 - Calibration easy pixel
 - Identical behavior against pulse and cont. X-ray sources
 - linearity of raw signal is not mandatory

Qualitatively consistent with physical model Calibration algorithm is now under progress

Data Processing and Detector Release

July 6, 2012

Current Status of SACLA Multiport CCDs

Pixel	50 um🗆	
Peak signal	>4.4 Me-	
	2700 ph.@ 6 keV	1
Noise	< 300 e-rms	
	0.18 ph.@ 6 keV	
	typ. 130-240 e-rms	
Pixel Number	1k x 512 pixels/sensor	
Array	Currently max 8 sensor	
	array with 4 Mpixels	
Rad. Hardness	>1.6 x10 ¹⁴ photons/mm ² @ 12 keV	
	> 1 estimated annual dose	
Dead Area at Edges	< 300 µm	
Sensitive Layer	50 µm	
	to be upgraded to 300 μm in Ph	ase III
		User Operat

2k x 2k pixels

User Operation 2012A proposal 25 proposal selected More than half will use MPCCD detector

User Experiment Example Coherent X-ray Imaging

Coutesy of Prof. Takahashi (Osaka Univ.) Dr. Yamamoto (RIKEN), and Prof. Nakasako (Keio Univ)

July 6, 2012

SIKEN

Future Applications

- SPring-8 II
 - Coherent flux of source
 x 1000 in 10 keV region More flux increase at sample position
 - A Target Candidate
 - X-ray Photon Correlation Spectroscopy (XPCS) in nanosecond regime
 - Provisional Demands for Detectors
 - Data frame acquisition at 23.6 nsec interval, (or 1.966 nsec interval at best)

- Medical Applications
 - In collab. with Lapis Semiconductor and Rohm group.

SOI Pixel Detector Monolithic Si Pixel Sensor with VLSI

Collaboration of KEK, and Lapis Semiconductor, and other institutions

Advantages Summarized by KEK

- Bonded wafer → Thick High Resistivity Sensor + CMOS
- Monolithic Detector \rightarrow High Density, Low material
- Standard CMOS → Complex functions in a pixel
- No mechanical bump bonding

→ High yield, Low cost Control of charge collection SOPHIAS

Small input capacitance

 \rightarrow ~10fF, High conversion gain, Low noise

 \rightarrow Cost benefit and Scalability

No Latch Up, Low SEE

luly 6.2012

- Low Power
- Operate in wide temperature (4-570K) range.

RIKEN joined SOIPIX collaboration from the end of 2007 Charge transimpedance amplifier is not needed. Speed and noise is not in trade-off relationship in conventional way.

Sample Hold Electronics

With 20 ENC at close to GHz rate

Noise Performance Demonstration SOI pixel sensor for future X-ray astronomical satellites

X-ray Detectors for Synchrotron Applications

Preliminary Functional Blocks

Assumed Parameter:

120 um pixel, 10 bit ADC, Analog: noise 50 e- Peak 100 ke-

Global Timing Track from upper and lower pads \rightarrow timing delay < Insc

Integrate new technology, such as 3D integration

Summary

SOI Pixel Technology

• Ramping up to real scientific applications.

SOPHIAS

• Peak Signal 7 Me-, Noise 100 e-, Dual gain pixel, 30 um □ pixel, 1.9 M pixel/chip

SOPHIAS status

- Just after 1st run, Testing is underway
- Major tasks
 - Pixel-by-pixel Calibration

Release

- 2014 for Dual-Sensor Detector
- Multi-Sensor Detector is envisaged. Release date is under discussion.

After SOPHIAS

- Low input capacitance
 - Fast shutter in the nanosecond regime

July 6, 2012