

## Wir schaffen Wissen – heute für morgen

Paul Scherrer Institut

Rafael Abela

Working Group: DAQ and DM



## Readout rate : driven by bunch structure 100Hz 400 Hz

## Readout data volume : driven by detector type:

|            | RATE  | DATA/PULSE | BANDWIDTH |  |
|------------|-------|------------|-----------|--|
| Optics     | 100Hz | 1kB        | 100kB/s   |  |
| Diagnostic | 100Hz | 100kB      | 10MB/s    |  |
| Detectors  | 100Hz | 10MB       | 1GB/s     |  |





Front End Electronics

Data Processing (rejection)

On the fly processing and monitoring

Archiving



DAQ and Data Management

# XFEL DAQ 10 GE readout link

- Dual link FMC mezzanine development led by DESY-FEA
  - collaborating with STFC and Uni. Heidelberg
- Use as standard transport link technology = 10Gbit/s fibre
  - no grounding issues
  - IEEE standard fixed (PHY and optical chips available)
  - FPGAs (e.g. Xilinx Vertex 5) can drive rate
- Measured data transfer (of 10Gbit/s max) and error rates:
  - Custom (Aurora) or UDP FPGA-to-FPGA
    wire-speed without losses
  - UDP FPGA-to-PC
    - 78% without losses
  - Bit transmission Error Rate ~10\*\*-15
    - = 1 frame/10hrs
- Status
  - First batch of pre-final FMC in production



Test setup: ML510 Vertex 5 evaluation Board + XPB personality board





#### DAQ and Data Management

## XFEL DAQ Clock & Control – control FEI

- Common sequencing and control developed by UCL
- Functionality:
  - distributes fast signals
    - clocks (100MHz control, 5MHz bunch...
    - EuXFEL timing events (start & stop train...)
    - VETO events (reject bunch number...)
  - Network messages (configuration...)
- Status:
  - finishing spec (clocks, protocols, VETOs...)
  - Phase 1 = working prototype (end 2010)
  - Contract signed







## Front End Interfaces:

- Interface to standard timing system
- Interface to machine protection system
- Identification by bunch number
- $\boldsymbol{\cdot}$  Control commands via LAN
- System Monitoring via LAN

Common specifications for all instruments



- Estimations of data volume per beam line and year
  - numbers in table are for compressed / not compressed data
  - SASE3 is assumed to be similar to SASE1

| SASE3 is assumed to be similar to SASE1 |                                         |            |            |               |
|-----------------------------------------|-----------------------------------------|------------|------------|---------------|
| Beam line                               | Data volume per year per beam line [PB] |            |            | puting        |
|                                         | 2014                                    | 2015       | 2016+      | 09,<br>com    |
| SASE1 (SPB+MID)                         | 0.6/10                                  | 1.3 / 20   | 2.8 / 39   | ch 20<br>I DM |
| SASE2 (FDE+HED)                         | -                                       | 1.9 / 1.9  | 3.8 / 3.8  | Mar<br>2 and  |
| SASE3 (SQS+SCS)                         | 0.6/10                                  | 1.3 / 20   | 2.8 / 39   | mate<br>DA(   |
| Total                                   | 1.2 / 20                                | 4.5 / 31.9 | 8.8 / 81.8 | Esti<br>See   |

Conclusion = Design generic DAQ and DM systems assuming 10PB/year data volume with the possibility to scale it in the range of 5 to 100PB/year



Store and provide access to data and metadata Specifications for data format File transfer, data export services

Storage policy: How, Where, how long Capacity at PSI Coherent Authentication, Authorization Accounting European approach

Data transfer to home institution Data Analysis : Virtual center?

Software : Common DAQ package Dataformat compatible with SLS and SINQ?



Data rate, data volume: There is no bottle neck. Challenging Space for server room and cooling capacity!

Algorithm for lossless compression are needed

Specification of the Front End Interface On-the-fly Data Processing Parallel processing

Detector read-out architecture + IT Infrastructure

Experience from SLS Beamlines (TOMCAT, cSAXS) and the new detector developments at PSI (Eiger) are an important test for SwissFEL

DAQ Software:

Matlab, IDL... evaluate other alternatives Experience from LCLS, FLASH, European XFEL

MANPOWER!