Search for Axion-Like Dark Matter and Exotic Yukawa-Like Interaction

UNIVERSITÄT BERN

AEC ALBERT EINSTEIN CENTER FOR FUNDAMENTAL PHYSICS

Ivo Schulthess 12. January 2023 - LTP / UCN Seminar University of Bern | Albert Einstein Center for Fundamental Physics

Fundamental Neutron and Precision Physics Experiments and Projects

Beam EDM Axion-Like Dark Matter

search for an oscillating neutron electric dipole moment (EDM) in Beam EDM data

Proton NMR Exotic Yukawa-Like Interaction search for a new spin-dependent interaction beyond the Standard Model

Axion-Like Dark-Matter Search

Axion-Like Dark-Matter Search The Universe and Dark Matter

what we know:

- no interaction with photons
- gravitational interaction
- (no self-interaction)

[1] doi:<u>10.1051/0004-6361/201833880</u>

Axion-Like Dark-Matter Search

The Universe and Dark Matter

example: Bullet Cluster 1E 0657-56

picture courtesy of: Chandra X-Ray Observatory: 1E 0657-56

Axion-Like Dark-Matter Search The Axion as a Solution to the Strong *CP* Problem

$$\mathcal{L}_{\theta} = \theta \frac{g^2}{32\pi^2} G_c^{\mu\nu} \tilde{G}_{\mu\nu}^c$$
$$d_n = 2.4 \times 10^{-16} \, e \, \mathrm{cm} \cdot \theta$$

$$|d_n| < 1.8 \times 10^{-26} \, e \, {
m cm}$$
 (90% C.L.)^[2]

[2] doi: 10.1103/PhysRevLett.124.081803

Axion-Like Dark-Matter Search The Axion as a Solution to the Strong *CP* Problem

[2] doi:<u>10.1103/PhysRevLett.124.081803</u>

Axion-Like Dark-Matter Search Motivation to Search for Axions

axion-gluon coupling
 → oscillating neutron EDM^[3]

 C_{G} : model dependent parameter f_{a} : axion decay constant a_{0} : axion field amplitude m_{a} : axion mass

[3] doi:10.1103/PhysRevD.89.043522

Measurement Technique

Ramsey's Method of Oscillatory Fields

Measurement Technique Ramsey's Method of Oscillatory Fields

Measurement Technique Ramsey's Method of Oscillatory Fields

LTP / UCN Seminar, Paul Scherrer Institut

Ivo Schulthess | 12.01.2023 | 11

The Beam EDM Apparatus Experiment Schematic

Larmor precession: $\hbar \omega = 2 \mu B_0 \pm 2 d E$

The Beam EDM Apparatus Experimental Setup

The Beam EDM Apparatus Experimental Setup

Axion-Like Dark-Matter Search Characterization of the Experimental Apparatus

Axion-Like Dark-Matter Search Characterization of the Experimental Apparatus

f = 50 mHz, A = 2.5 mA

Axion-Like Dark-Matter Search Characterization of the Experimental Apparatus

Axion-Like Dark-Matter Search Data Processing

LTP / UCN Seminar, Paul Scherrer Institut

Ivo Schulthess | 12.01.2023 | 18

Axion-Like Dark-Matter Search Data Processing

conditions for an axion signal:

- 1. no signal for E = 0
- peak with same amplitude for B↑↑E and B↑↓E
- 3. 180° phase shift for $B\uparrow\uparrow E$ compared to $B\uparrow\downarrow E$

Axion-Like Dark-Matter Search Data Processing

Axion-Like Dark-Matter Search Results

Axion-Like Dark-Matter Search Conclusion

- set a new limit on the existence of axion-like dark matter in a yet unexplored mass range^[4]
- benefits from existing *Beam EDM* apparatus
- only 24 hours \rightarrow 8 orders of magnitude in m_a

[4] doi:<u>10.1103/PhysRevLett.129.191801</u>

Properties of the Interaction

• search for BSM physics

- interaction under test:
 - spin-dependent interaction of two fermions
 - momentum dependent
 - new massive spin 1 exchange boson
 - o non-relativistic limit

$$V_{\perp} = \frac{f_{\perp}}{8\pi m} \frac{e^{-r/\lambda}}{r} \left(\frac{1}{r} + \frac{1}{\lambda}\right) \vec{\sigma} \cdot (\vec{v} \times \vec{r})$$

$$V = -\mu_p B^*$$

Properties of the Interaction

- search for BSM physics
- interaction under test:
 - spin-dependent interaction of two fermions
 - momentum dependent
 - new massive spin 1 exchange boson
 - o non-relativistic limit

$$V_{\perp} = \frac{f_{\perp}}{8\pi m} \frac{e^{-r/\lambda}}{r} \left(\frac{1}{r} + \frac{1}{\lambda}\right) \vec{\sigma} \cdot (\vec{v} \times \vec{r})$$
$$V = -\mu_n B^*$$

The Proton NMR Apparatus Experiment Schematic

Ivo Schulthess | 12.01.2023 | 27

The Proton NMR Apparatus Experimental Setup

The Proton NMR Apparatus Experimental Setup

The Proton NMR Apparatus Experimental Setup

Exotic Yukawa-Like Interaction Copper Sample Setup

Exotic Yukawa-Like Interaction Results and Conclusion

Exotic Yukawa-Like Interaction Results and Conclusion

LTP / UCN Seminar, Paul Scherrer Institut

Ivo Schulthess | 12.01.2023 | 33

Measurement of Resonance Effects Bloch-Siegert Shift

$$\omega_0 = -\gamma B_0$$
$$\omega_1 = -\gamma B_1$$

$$\delta\omega = \frac{\omega_1^2}{4\omega_0}$$

Measurement of Resonance Effects Bloch-Siegert Shift

•
$$\delta \omega = \frac{\omega_1^2}{4\omega_0}$$

 can be compensated using additional RF signals

Measurement of Resonance Effects Bloch-Siegert Shift

Measurement of Resonance Effects Bloch-Siegert Shift Results

Exotic Interaction and Resonance Effects Conclusion

- developed and built the *Proton NMR* apparatus
- performed proof-of-principle search for exotic Yukawa-like interaction
- investigated the Bloch-Siegert shift and its compensation and enhancement
- improved setup currently under development

Fundamental Neutron and Precision Physics Acknowledgments

