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Definition of Uncertainty Quantification (UQ)

Uncertainty Quantification (UQ) aims to calculate the effect
of unknown or uncertain system parameters on the outcome of
an experiment or computation.
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Definition of Uncertainty Quantification (UQ)

Let f ∈ L2(Rd ) be a computationally expensive model with

f : Rd → R
x 7→ f (x) .

Let x = (x1, x2, ..., xd ) be an input with uncertainty ∆x .
What is the uncertainty in f (x)?

Common approach, model input as random variable X ∼ N (x ,Σ), with Σ ∈ Rd×d the
covariance matrix (uncertainties and correlations):

X ∼ N (~x ,Σ)
f (X )

4750 5000 5250 5500 5750
Decay Heat at 1.5 years of cooling [W/t]

M
ea

n

Std

DH = 5245.79 ± 194.15

Concentrate on Response Variability Methods: estimate mean and variance of output

f (x) = µ± σ .
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Motivation: SNF Characterisation

Nuclear burnup simulations are used to characterise spent nuclear fuel:

f :


Fresh fuel parameters
Irradiation history
Reactor parameters

Nuclear Data


︸ ︷︷ ︸

Input with known uncertainty

→

 Decay Heat
Isotopic Content

Criticality


︸ ︷︷ ︸

Output with unknown uncertainty

f : R15000 → R
Nuclear Data→ Decay Heat

Any uncertainty in outputs will increase the risks and costs of

Transport Storage Disposal

Accurate estimation of uncertainty saves money and
reduces risks.
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Simple Monte Carlo UQ

1. Sample inputs
~x1, ..., ~xN ∼ N (~x ,Σ)

Run f (~xi )
N times

Compute sample
mean and variance

4750 5000 5250 5500 5750
Decay Heat at 1.5 years of cooling [W/t]

M
ea

n

Std

DH = 5245.79 ± 194.15

2. Compute sample mean and variance

µN =
1

N

N∑
i=1

f (x i ) , σ2
N =

1

N − 1

N∑
i=1

f (x i )−
N∑
j=1

f (x j )

N

2

.

Simple MC is unbiased, but slow (error=
√

MSE = O
(

1√
N

)
):

lim
N→∞

µN = E[f ] , since MSE
(
µN − E[f ]

)
=

Var[f ]

N
,

lim
N→∞

σ2
N = Var[f ] , since MSE

(
σ2
N −Var[f ]

)
=

1

N

(
m4[f ]−

N − 3

N − 1
Var2[f ]

)
.
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Simple Monte Carlo UQ

Simple MC is the current approach used for nuclear data propagation:

– MC converges as O
(

1√
N

)
, i.e. many simulations required!

– E.g. for SNF characterisation N ∼ 1000, with each simulation lasting a few
hours.

– Expecting > 12000 fuel assemblies in Switzerland.

– ⇒ millions of CPU hours ⇒ MC UQ is too slow!
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UQ with Surrogate Models

A more modern approach: Surrogate models (e.g. PCE [1], NNs [2, 3]):

1. Gather a training set x1, f (x1), x2, f (x2), ..., xNtr , f (xNtr ).

2. Train a surrogate model f̃ ∼ f , that is fast to evaluate.

3. Run surrogate M times to obtain samples f̃ (z1), f̃ (z2), ..., f̃ (zM), with
Z ∼ N (x ,Σ).

4. Compute sample mean µ̃M and variance σ̃2
M .

– Converges very fast, since M can be large

– Training f̃ requires a big training set, at least Ntr > d (generally much more,
see curse of dimensionality) (e.g. nuclear data has d = 15 000).

– Estimates are biased since

MSE
(
µ̃M − E[f ]

)
= E2

[
f̃ − f

]
+

Var
[
f̃
]

M
,

MSE
(
σ̃2
M −Var[f ]

)
=
(
Var[f ]−Var[f̃ ]

)2
+

1

M

(
m4[f̃ ]−

M − 3

M − 1
Var2[f̃ ]

)
.
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In summary: simple MC and surrogate models are inadequate for
high-dimensional UQ.
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Lasso Monte Carlo

Lasso Monte Carlo (LMC) is a new technique that combines two existing
methods:

– Multilevel Monte Carlo (MLMC) [4, 5]

– Lasso regression [6]
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MLMC

MLMC combines models of different levels of fidelity.

Let X be a random variable, and f1, f2, ..., fL be models of increasing accuracy, and
increasing computational cost. Then

E[fL(X )] = E[f1(X )] + E[f2(X )− f1(X )] + E[f3(X )− f2(X )] + ...+ E[fL−1(X )− fL(X )]

Terms computed with

E[f`(X )− f`−1(X )] =
1

N`

N∑̀
i=1

{f`(xi )− f`−1(xi )},

will converge as O
(

Var[f`−f`−1]√
NL

)
.

So if we have

Var(f1) > Var(f2 − f1) > Var(f3 − f2) > ... > Var(fL − fL−1),

we require
N1 > N2 > ... > NL.

Overall computational cost is reduced if N` are correctly chosen!
Thanks to more recent papers [7, 5], MLMC can be used for higher order moments.
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Two-level MC

Let

– f be the true, expensive model, that we evaluate N times:
f (x1), f (x2), ..., f (xN).

– f̃ a cheap, biased, surrogate model, that we evaluate N + M times, with
M � N: f̃ (x1), f̃ (x2), ..., f̃ (xN), and f̃ (z1), f̃ (z2), ..., f̃ (zM).

Then the estimators are

µN,M =
1

M

M∑
i=1

f̃ (z i ) +
1

N

N∑
i=1

f (x i )− f̃ (x i ) = µ̃M + µN − µ̃N ,

σ2
N,M = σ̃2

M + σ2
N − σ̃

2
N .

– Estimators are unbiased limN→∞
M→∞

µN,M = E[f ] , limN→∞
M→∞

σ2
N,M = Var[f ] .

– More accurate than simple MC µN , σ
2
N , if and only if following conditions are

satisfied

Var[f − f̃ ] ≤ Var[f ] , (1)

m2,2

[
f + f̃ , f − f̃

]
+ 1

N−1 Var[f + f̃ ] Var[f − f̃ ] − N−2
N−1

(
Var[f ] − Var[f̃ ]

)2
≤ m4[f ] − N−3

N−1 Var2[f ] .

(2)
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Two-level MC

Common usage of MLMC:

1. Gather a training set x1, f (x1), x2, f (x2), ..., xNtr
, f (xNtr

).

2. Train a surrogate model f̃ ∼ f , that is fast to evaluate.

3. Evaluate f̃ N + M times to obtain f̃ (x1), f̃ (x2), ..., f̃ (xN), and

f̃ (z1), f̃ (z2), ..., f̃ (zM).

4. Evaluate f N times, to obtain f (x1), f (x2), ..., f (xN).

5. Compute 2-level estimators µN,M , σ
2
N,M .

– Unbiased.

– More accurate than simple MC for a given N (if conditions (1, 2)).

– However, bottleneck is still generating the training set Ntr

(especially in high-dimensional cases).
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Choosing Surrogate Model

How to choose a surrogate model that satisfies convergence conditions,
and can be trained with a small training set Ntr � d?

Lasso regression technique fits a sparse linear model:

f̃ (x) = β · x , with β sparse,

by minimising loss function

L(β) =
1

2

Ntr∑
i=1

(f (x i)− β · x i)
2

︸ ︷︷ ︸
OLS loss

+ λ||β||1︸ ︷︷ ︸
Regularisation term

,

with λ > 0 a chosen regularisation constant.

– Lasso can be trained for small training sets, without overfitting.

– Does it satisfy the convergence conditions (1, 2)?
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Choosing Surrogate Model

Does Lasso f̃ satisfy the convergence conditions (1, 2)?

Condition (1) Var[f − f̃ ] ≤ Var[f ], is always satisfied! (as long as λ is
chosen correctly)
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I.e. the two-level estimator µN,M with Lasso, is guaranteed to converge
equally or faster than simple MC.
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Choosing Surrogate Model

Does Lasso f̃ satisfy the convergence conditions (1, 2)?
Condition (2), is unfortunately not guaranteed.

However, if f is a noisy linear function

f (x) = α · x + E , with E ∼ N (0, ε)

then condition (2) is guaranteed! This is true to first order for any f :

f (x + δx) = f (x0) + δx ·∇f (x0) +O
(
||δx ||2

)
.

I.e. the two-level estimator σ2
N,M with Lasso, will often converge faster

than simple MC, and is guaranteed to do so under certain conditions on
f .
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Lasso Monte Carlo

Two-level MC + Lasso:

1. Gather small set x1, f (x1), x2, f (x2), ..., xNtr
, f (xNtr

).

2. Train a Lasso model f̃ ∼ f .

3. Evaluate f̃ N + M times, with M � N.

4. Evaluate f N times.

5. Compute 2-level estimators µN,M , σ
2
N,M

Reuse the same set for training!
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Lasso Monte Carlo

LMC algorithm:

1. Evaluate f N times: x1, f (x1), x2, f (x2), ..., xN , f (xN).

2. Train a Lasso model f̃ ∼ f .

3. Evaluate f̃ N + M times, with M � N.

4. Compute 2-level estimators µN,M , σ
2
N,M

– Unbiased.

– Faster (or equal) convergence than simple MC for a given N.

– Surrogate model trained for free (no extra simulations required).

– Note: this version of LMC omits some steps (splitting and
averaging), see full algorithm in paper.
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Lasso Monte Carlo

An actual code example:

>>> from sklearn.linear_model import LassoCV , Lasso

>>> from LMC.classLMC import LassoMC

>>> lmc = LassoMC(regressor = Lasso(lambda = 0.02),

random_state = seed , verbose = True ,

validation_method = ’5Fold’)

>>> N = 150; M = 6000

>>> Xs = get_inputs(N)

>>> ys = [my_simulation(x) for x in Xs]

>>> Zs = get_inputs(M)

>>> lmc.get_single_estimate(Xtrain = Xs,

ytrain = ys,

Xtest = Zs)

Ntr = 150 labelled samples , Ntest = 6000 unlabelled samples

MC estimates: 5234.470666666667 +- 174.65316984757996

LMC estimates: 5246.745253371253 +- 192.6719429998857

Most expensive
step of the algorithm
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SNF Characterisation

f : R15 557 → R
Nuclear Data 7→ Decay Heat

Plots show increasing N, and fixed M = 6000.
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To obtain a 1% error in estimations, simple MC requires N = 1000 expensive
simulations f , while LMC requires N = 200. I.e. 5 times speedup thanks to LMC.
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SNF Characterisation

Fixed N = 150 and M = 6000.

f : R15 557 → R
Nuclear Data 7→ Isotopic Content

Predicting different quantities gives different improvements. But LMC is
always equal or better than simple MC.
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Linear Function

Let f be a linear function with a large input dimension d = 400:{
f (x) = α · x ,
with α =

(
1, 1

2
, 1

5
, 1

10
, 1

20
, 1

50
, 1

100
, 1

100
, ..., 1

100

)
,

with dim(α) = 400 and with a normally distributed input X ∼ N (0, Id ).
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FPUT Oscillator

Let there be a chain of nonlinear oscillators

ẍj = kj
(
`j+1 − `j

)
+ αkj (`

2
j+1 − `

2
j ) , ∀j = 1, 2, ...,N ,

with appropriate boundary conditions.
`1

m1

`2

m2 · · · mN−1

`N

mN

`N+1

Consider an uncertainty in the spring constants k1, k2, ..., kN , and nonlinear term α,
with N = 40. What is the uncertainty in Ekin?
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Sobol Function

{
f (x) =

∏d
i=1
|4xi−2|+ci

1+ci
,

with c = (1, 2, 5, 10, 20, 50, 100, 200, 500, 500, ..., 500) ,

with d = 400, and X ∼ U[0, 1]d .
Function is symmetric around x = 0.5, so a Lasso fit model will be flat, i.e.
worst-case scenario, LMC will be equally accurate as simple MC.

However we can instead fit a modified Lasso model f̃ (x) = β · φ(x), with
φ(x) = |x − 0.5|.
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Any kind of surrogate could be used in LMC, as long as it is strongly regularised.
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Comparison to PCE

Use the Sobol function, with input dimension d = 8 (higher dimensions are too slow
to handle with Chaospy library).
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Arnau Albà, R. Boiger, D. Rochman, A. Adelmann (LSM, PSI) LMC for High Dimensional UQ ML Lunch, 18th January 2023 25 / 28



Conclusions and Further Work

– LMC converges up to 5 times faster than simple MC! I.e. same results with
20% of the computing resources.

– LMC is often advantageous over simple MC and surrogate models in
high-dimensional settings.

– Given a set of simulations x1, f (x1), x2, f (x2), ..., xN , f (xN), the LMC
estimates can be obtained without any extra simulations.

– Could in principle be used with any surrogate model, as long as it is regularised

– The speedup is not constant, it’s very dependent on f .

– Unfortunately, theoretical guarantee of faster convergence is conditioned on:

– f being close to a noisy linear function.

– an optimal choice of regularisation parameter λ (chosen empirically so
far).
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Thank you for your attention.

Questions?
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Results

Decay heat prediction at 30 years of cooling:
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Results

Decay heat prediction at 50 years of cooling:
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Results

U235 concentration at discharge
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Lasso versions

Other versions of Lasso regression
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Full LMC Algorithm

Require: the probability distribution of the input of f (x), the training sets {x1, ...xN}
and {z1, ...zM}

Ensure: N � M
1: Compute the labels f (x1), ..., f (xN) from the training set.
2: Compute the simple MC estimates µN , σ

2
N with the labelled training set, using the

simple MC estimators.
3: Do an S-fold split on the training set to obtain S smaller training sets

T1,T2, ...,TS of size N S−1
S

each, and S correction sets C1,C2, ...,CS of size

n := N
S

each. Each training set Ti does not overlap with its corresponding
correction set Ci .

4: for s = 1 . . . S do
5: Fit a Lasso model f̃s on training set Ts.
6: Use the surrogate model to compute the labels of the surrogate set

f̃s(z1), f̃s(z2), ..., f̃s(zM), and the Cs correction set

f̃s
(
xn(s−1)+1

)
, fs
(
xn(s−1)+2

)
, ..., f̃s (xns) .

7: Combine the n labels from the correction set and the M from the surrogate set
to compute the two-level estimators (µn,M)s and (σ2

n,M)s.
8: end for
9: Compute the LMC mean and variance, by averaging out the estimations of each

split

MN,M =
1

S

S∑
s=1

(
µn,M

)
s
, and Σ2

N,M =
1

S

S∑
s=1

(
σ2
n,M

)
s
.
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