MUSE Simulation

Steffen Strauch University of South Carolina

Supported in parts by the U.S. National Science Foundation: NSF PHY-2111050 (USC). The MUSE experiment is supported by the U.S. Department of Energy, the U.S. National Science Foundation, the Paul Scherrer Institute, and the US-Israel Binational Science Foundation.

MUSE Review, BVR 54, PSI, January 23, 2023

for the MUSE Collaboration

Recent updates of the MUSE simulation

- More detailed and accurate geometry
- Flexible alignment of components
- More realistic particle beam
- Digitization of simulated events
- Realistic event generator to study radiative effects, ep→ epγ [BVR 52]

Implementation of the STT frames in the MUSE simulation

Simplified CAD model (Tom O'Connor, ANL) with detail in outer surface maintained \

Binary STL files can now be loaded directly in the simulation.

More work needed to bring all relevant structure material into the simulation.

Reimplementation of target ladder including carbon target

Implementation: Stefan Lunkenheimer

Target ladder with LH2, dummy, and carbon targets

Not included yet: beam-focus monitor

Scattering off the target chamber contributes significantly to the total DAQ rate

Simulated scattering-chamber hits by a 161 MeV/c electron beam with trigger on the beam-left (x > 0) SPS detectors, no target

Target chamber post veto detector:

(T. Rostomyan)

- Must be inside of the chamber.
- Maximum coverage of chamber posts, while
- clearing the acceptance of scattering and straight through events, and
- clearing in-bound chamber side window

Anticipated suppression of chamber hits: Fewer than 10% remaining

Planned simulation geometry update

Drawing by Tom O'Connor (ANL)

The chamber windows bow inwards when the chamber is under vacuum

A more realistic shape of the sideexit window is needed in the simulation to properly simulate the correct material thickness for all scattering angles.

Detector positions in the simulation define the geometry used in the data analysis

 Implement the geometry consistent with design or known as-built geometry

- Survey the setup
- Modify geometry of simulation to fit survey data

 Export geometry as GDML file for use in data analysis

Example fit result

/g4PSI/det/trans GEM0	-0.511	0.106	-0.008 mm
/g4PSI/det/trans GEM1	-1.034	1.020	-4.803 mm
/g4PSI/det/trans GEM2	-0.754	0.246	0.937 mm
/g4PSI/det/trans GEM3	-1.151	0.304	0.065 mm
/g4PSI/det/rot GEM0	0.036	0.018	-0.541 deg
/g4PSI/det/rot GEM1	-0.666	-0.233	-6.706 deg
/g4PSI/det/rot GEM2	-0.075	1.132	-1.290 deg
/g4PSI/det/rot GEM3	0.032	-0.164	-0.223 deg

fit translational and rotational offsets

- including (new) correlations

10³ g4PSI Beam parameter tune to GEM-track distribution 10

50

.20

1200 0.02 1200

All simulated detector responses are now digitized for analysis

Detectors

SPS, BM, BH, VETO	g4PSIS
CAL	g4PSIC
GEM	g4PS
STT	g4PS

11

Digitization of a simulated energy deposition of *E* at position *x* in a scintillator

Digitized light output at the two PMTs:

$$Q_1(E, x) = g_1 E A_1(x)$$
$$Q_2(E, x) = g_2 E A_2(L - x)$$

Detector characteristics that enter the digitization

- Pedestals
- Gains and light-output resolution
- Attenuation function, A(L/2) = 1
- Effective speed of light
- Time-walk correction
- Time resolution
- Discriminator threshold

SPS Examples

A. Flannery

Simulated time response, $\Delta t = t_{down} - t_{up}$

$$\Delta t = t_{\text{down}} - t_{\text{up}} = \frac{1}{c_{\text{eff}}} (2x - L)$$

SPSRF06

up

Effective speed of light: $c_{eff} \approx 14.5$ cm / ns

14

Simulated light output and attenuation

The pedestal to signal ratio and the below-threshold events are properly described by the simulation when the trigger on the SPSRF wall is considered.

SPSRF06

up

BH

relatively more pions in the data at the lowmomentum edge of the distribution

Larger variety of **energy depositions** in the experiment.

Yield fractions for various paddles are difficult to simulate:

- Beam tails
- Secondary particles

Particles hitting the VETO detector:

30% scattering-trigger events

VETO detector paddle

Simplified model of VETO detector paddle in the simulation.

 π stopped in the inner two BMA bars, but no evidence of pions reaching outer two BMA bars.

- Excellent agreement for electron and muon energy depositions.
- Mismatch of measured and simulated stopped- π energy deposition:
- gain non-linearity, saturation?
- too narrow integration gate?
- energy degradation of π not in the simulation?

Ionization quenching in the scintillators

Quenching function for BC-408

- Ionization quenching is relevant for digitization
- Parameters need to be tuned for EJ-204

BM — Hit distributions well described

Tool to constrain beam parameterization for the simulation?

Simulated beam possibly shifted by 1/3 of a paddle width to larger paddle numbers (beam left), this corresponds to 2 mrad as seen from GEM0.

BM time resolution

BM read by constantfraction discriminators

Nevertheless, the timeresolution can be time-walk corrections

BMA: fair description with the assumed time resolution of

BMB, **BMC**: good description with the assumed time resolution of $\sigma(t_{mean}) = 100 \text{ ps}$

Simulation and digitization of lead-glass Cherenkov detector

Method A: Cherenkov light production and photon transport by Geant4. Accumulate photon yield, Y, at the site of the PMT.

Photons in the block and total internal reflection

Method B (fast): Estimate the number of Cherekov photons from the speed of the particle:

$$Y \propto \int 1 - \frac{1}{n^2 \beta(x)^2}$$

Digitization: Conversion of light-output *Y* to QDC values (pedestal, gain per lead-glass element, resolution).

W. Lin

GEM digitization of simulated data

- Mapping of hit position into struck strip numbers for both axis
- Modeling of hit pattern on strips
- Suppression of dead channels
- Conversion to ADC values (including channel pedestal, and with currently fixed gain, noise)
- Per APV common mode noise

J. Bernauer

STT digitization of simulated data

STTLH90

STTLV60

local x (mm)

- Straws are identified by copy-ID numbers
- Local hit positions and directions are converted to drift distances and drift times that include effective resolutions
- Suppression of dead channels

I UGO DIARA 1 Multiplicity with TOT Cut

LUCO DIADA 1 Otravy Mul with TOT OU

ESEPP in g4PSI - initial version

Examples: $ep \rightarrow e'p\gamma$

Initial-state radiation low photon energy

Initial-state radiation high photon energy

 $p'_e < p'_{min}$

 $p'_e > p'_{min}$

ESEPP: A.V. Gramolin et al., J. Phys. G: Nucl. Part. Phys. 41 (2014) 115001

 $p_0 = 161 \text{ MeV/c}$ $\theta \approx 60^{\circ}$

Final-state radiation

Radiative corrections for e^-p scattering data in **MUSE kinematics**

CAL veto on downstream photons reduces radiative corrections and p'min dependence, reducing uncertainty.

The preliminary estimates of the total uncertainties in the radiative corrections for electrons are **0.2%** - **0.5%**.

Angle-dependent uncertainty, relevant for radius extraction, \leq **0.3%**.

Much more work to be done ...

- Geometry
 - Include all relevant structure material (in/out scattering, background source)
 - Setup and alignment (run-time dependent)
- Running the simulation
 - Finalize model and tune of particle beams
 - Rare-event simulations
 - Include relevant physics processes (radiative processes)
- Digitization
 - Finalize the implementation of the digitization methods
 - Digitization of trigger conditions, as well as RF and trigger times
 - Tune of detector parameters (run-time dependent)
 - Slow-control data in the simulation output

