Hardware Readiness and MUSE 2023 RUNNING

Paul E Reimer and Ievgen Lavrukhin
PSI, Villigen, Switzerland
23 January 2023

ESNERGY

Target Operation with LH ${ }_{2}$ (13 Oct - 15 Dec 2022)

- Target operated with LH_{2} for 9 weeks
- Target uptime 100\%
- 1450 hours (62 days w/o cool down and warmup)
- no interruptions/warmups during these 9 weeks
- temp. regulated by Lakeshore PID on condenser
- Target Temperature (bottom end cap):

- stable at 0.008 K level over entire beam time
- Data recorded every ~ 60 seconds
- Across full operating time:
- Temperature $=20.69 \pm 0.008 \mathrm{~K}$

Stable operation

H2 Target Operation October 13-December 15; Fall 2022

Straw Tube Tracker (STT)

- Rebuild RH90 2022:
- Replaced some broken straws;
- Retest wires.
- STT pressure interlock:
- Hardware and Software interlocks for each chamber turn off STT high voltage during under-pressure conditions;
- Pressure monitored and gas is supplied independently for each chamber;
- Control software runs on Raspberry Pi
- previous failure was due to an antivirus incident MS windows

Straw Multiplicity

run 9422
fall 2021
(shown in last year's BVR)

run 15600
fall 2022

Straw Multiplicity

run 9422
fall 2021
(shown in last year's BVR)

Nusứmbercoffriah Planessthifit
run 15600
fall 2022

Straw Tube Tracker (STT)

- New gas manifolds developed @ HUJI
- 6 mm quick connects +15 plastic manifolds $=75$ straws;
- Modular chamber design allows speedy repair at the cost of losing individual straws;
- Prior to 2022 beam time 10 manifolds were installed, supporting 713 straws $-1 / 4$ of the total.

Hardware: New CAEN HV system

- Two new CAEN HV systems were purchased (GW, UM, PSI, USC), received, installed, and working.
- Currently in use to power all conventional PMTs.
- Detector calibrations were performed prior to 2022 beamtime.

Target Post Veto

- GEM-STT vertex reconstruction shows many triggers from scattering from target chamber support posts
- Balance veto coverage with proximity to thin vacuum chamber windows during installation
- 10\% reduction of trigger rate

Target Post Veto

- Fiber readout—light limited
- Average of 9 photoelectrons
- MC of pe statistics tuned to data with Gaussian distributions (energy loss not modeled).
- Higher energy loss events will fill in high QDC tail.

- Comparison of SiPM and Fiber readout ongoing.

Hardware: Analysis/Storage Upgrade 2022

- The MUSE analysis and storage setup consists of several computers, mostly located in building WHGA.
- Four-nodes computing cluster is up and running:

New mpc3070 (on platform) => 4 Tb SSD for DAQ cache +10 Gb Ethernet. mpc2781
mpc2698 \leftharpoonup (WHGA) 12 cores/ 24 threads each, 64/128 GB ram
Inst. late 2021 mpc2965

- MUSE Data Storage:
musefs00 (WHGA) => 64 TB
mpc2199 (WHGA) => 30 TB
Inst. late 2021 mpc2965 (WHGA) => 100 TB
New museds01 (WHGA) => 665 TB*.

Analysis/storage/backup ($2 x$ copy of raw files)
(Rutgers, Argonne)
*Half of disk slots are used, can be extended.

Stability Over Time

- RF vs electron timing
- Stability at 50 ps

- μ and π compared with e time

Stability Over Time

- RF vs electron timing
- Stability at 50 ps

- μ and π compared with e time

- Gain Stability
- stability of pedestal at few channels.

CALO Crystal 43

Argonne $\boldsymbol{\Delta}$

Stability over Time

$t_{R F \pi}-t_{R F e} B H D$

Stability over Time

Recent Major Financial Investments

Item	Groups	
CAEN HV	GW, UM, PSI, USC	$\$ 75,000$
PB Storage	Rutgers, ANL	$\$ 45,000$
Mesytec CFD \& QDC	GW, Rutgers	$\$ 40,000$
Total		$\$ 160,000$

Misc. Hardware and Maintenance for 2023

System	Issue
Beamline	Improved collimator (FS11, FS13) readback (request to PSI)
BHC	Replace high current SiPMs or exchange BHC plane
BHD	Install delay cables (will allow walk corrections)
GEMs	Complete DAQ upgrade
PV	Evaluate if WLS sufficient/positioning sufficient, adjust
BMC	Investigate/replace low gain paddles (possible crazing).
STT	Replace remaining old gas manifolds, re-enable cards
SPS	Fix broken SPSF lower PMT Additional source tests
DAQ	QDC pedestal shifts, investigate Mesytec firmware from end October, v10.xxxxx STT TRB TDC loss, while data was seen in scalers. Under investigation, immediate solution was to switch TRB FPGA
DAQ-trigger Data backup to tape computer Timing test cluster UPS selected, will be ordered	

Beam Request

- Request 6 Contiguous Months
- Recent experience shows that each move into the area costs > 3 weeks of beam for calibrations, recommissioning, etc.
- Earlier, shorter estimate was not based on experience
- Crane time \& electronics connections are quick (few days).
- Data check out within 1-2 days

- Each move has risk of damage. (Crane operators are very careful, but just having more people around increases risk.)
- Move in prior to beam eliminates most (not all) of this time.
- Each move requires a survey (hard to schedule)
- best before run (not included in 3 weeks).

Run Plan

- Equal time on each beam momenta, 115, 160 \& 210 MeV
- Equal time in each polarity

Target	
LH2	45%
Empty	35%
C	10%
No Veto	3%
SPS efficiency	3%
No Target	3%

- 2022 distribution of target time; expect similar in 2023
- Tune analysis on C target
- Provide slightly more events than 2022
- Quicker startup if done during down time

SUMMARY:

The MUSE spectrometer is ready to go!

- Straw Tube Tracker (STT)—repaired \& operates reliably
- Target—Lakeshore communication has been solved.
- Target post vetos in place and operating
$t_{\mathrm{RF}_{\pi}}-\mathrm{t}_{\mathrm{RF}} \mathrm{BHD}$
- Computing resources/facilities in place.
- Minor maintenance activities in 2023
- Demonstrated system Stability
- Major advances in Analysis

- Tracking, Calorimeter, Scintillators responses understood
- Good agreement between Monte Carlo \& data
- Clean reconstructed vertices
- Blinded C Cross Section - more to implement

Request 6 Contiguous Months

Items from last BVR meeting

Analysis

Backup => Have to figure out details.
Get data off-site

Tracking Straws
STT Hardware pressure interlock
New metal manifold and o-rings
Rebuild STT RH90 before beamtime 2022
Replace broken straws.

2nd copies of raw data are kept on site/different storage system Current analysis model is using data on site

Completed before 2022 run
Completed before 2022 run
Completed before 2022 run
Completed before 2022 run

Beamline
NO issues reported.

ITEMS FROM LAST BVR MEETING

Tracking GEM
Check and improve seating of APV cards on US
GEM.
Remove one GEM when 3 GEMs are proven to be sufficient
Complete MPD4 firmware update for dual word
packing.
Add GEM HV to the MUSE Slow Control.
Low priority
Multi-sample analysis for GEM.
Track based alignment
Currently using clustering of time-averaged strips
Tracking efficiencies at low and high rates
Software ready
Further improvement of clustering, signal/noise, In progress. Masking and interpolation of hot and dead
efficiency.
channels. 1D clusters now being stored before pairing X and Y.

Items from last BVR meeting

Timing
Detectors \&
Calorimeter

Rare loss of QDC DC-offset; Rare false reporting of rising and falling edges. Transient and very brief departures of the HV from the set values
New CAEN HV modules
Target
Target Lakeshore Communication tests
Upgrade Target monitoring GUls for shift workers

Mesytec MQDC Firmware updated/downgraded
Handled by analysis used with 2022 data
New CAEN HV system installed and used in 2022 run
Completed and used in 2022 run

New Lakeshore controller installed and used in 2022 run
Completed and used in 2022 run

Items from last BVR meeting

Trigger \&

Electronics

Accelerator RF digitization with a new custom module;
PID trigger adjustments;
LUT tables adjustments based on survey.
Convert Veto and BM Triggers from NIM to FPGA.
Trigger analysis and trigger configuration scripts;
Purchase of spare QDCs and CFDs;
Testing MEsytec VME controller;
Edge flip in TRBs;
TRB3 stability;

Completed and used in 2022 run
Completed and used in 2022 run
Low importance, not complete
Still using NIM triggers
Completed and used in 2022 run
Completed and available in 2022 run (GW, Rutgers)
M VME controller not appropriate for MUSE
Handled in Analysis
Much improved, cause was buffer overflow in STTs for highrate channels

