HARDWARE READINESS AND MUSE 2023 RUNNING

PAUL E REIMER AND IEVGEN LAVRUKHIN

PSI, Villigen, Switzerland 23 January 2023

TARGET OPERATION WITH LH₂ (13 OCT – 15 DEC 2022)

- Target operated with LH₂ for 9 weeks
- Target uptime 100%
 - 1450 hours (62 days w/o cool down and warmup)
 - no interruptions/warmups during these 9 weeks
 - temp. regulated by Lakeshore PID on condenser
- Target Temperature (bottom end cap):
 - stable at 0.008 K level over entire beam time
- Data recorded every ~60 seconds
- Across full operating time:
 - Temperature = 20.69 ± 0.008 K

Stable operation

STRAW TUBE TRACKER (STT)

- Rebuild RH90 2022:
 - Replaced some broken straws;
 - Retest wires.
- STT pressure interlock:
 - Hardware and Software interlocks for each chamber turn off STT high voltage during under-pressure conditions;
 - Pressure monitored and gas is supplied independently for each chamber;
- Control software runs on Raspberry Pi
- previous failure was due to an antivirus incident MS windows

STRAW MULTIPLICITY

run 9422 fall 2021 (shown in last year's BVR) Number of LV Planes Hit 10^{6}

Number of RV Planes Hit

run 15600 fall 2022

STRAW MULTIPLICITY

STRAW TUBE TRACKER (STT)

- New gas manifolds developed @ HUJI
 - 6 mm quick connects + 15 plastic manifolds = 75 straws;
 - Modular chamber design allows speedy repair at the cost of losing individual straws;
 - Prior to 2022 beam time 10 manifolds were installed, supporting 713 straws—¼ of the total.

HARDWARE: NEW CAEN HV SYSTEM

- Two new CAEN HV systems were purchased (GW, UM, PSI, USC), received, installed, and working.
- Currently in use to power all conventional PMTs.
- Detector calibrations were performed prior to 2022 beamtime.

TARGET POST VETO

- GEM-STT vertex reconstruction shows many triggers from scattering from target chamber support posts
- Balance veto coverage with proximity to thin vacuum chamber windows during installation
- 10% reduction of trigger rate

SiPM readout <

TARGET POST VETO

- Fiber readout—light limited
 - Average of 9 photoelectrons
 - MC of pe statistics tuned to data with Gaussian distributions (energy loss not modeled).
 - Higher energy loss events will fill in high QDC tail.
- Comparison of SiPM and Fiber readout ongoing.

HARDWARE: ANALYSIS/STORAGE UPGRADE 2022

- The MUSE analysis and storage setup consists of several computers, mostly located in building WHGA.
- Four-nodes computing cluster is up and running:

Newmpc3070 (on platform) => 4 Tb SSD for DAQ cache + 10 Gb Ethernet.mpc2781mpc2698mpc2698(WHGA) 12 cores/ 24 threads each, 64/128 GB ramInst. late 2021mpc2965

MUSE Data Storage:

 musefs00 (WHGA) => 64 TB

 mpc2199 (WHGA) => 30 TB

 Inst. late 2021

 New

 museds01 (WHGA) => 665 TB*.

Analysis/storage/backup (2x copy of raw files)

(Rutgers, Argonne)

*Half of disk slots are used, can be extended.

STABILITY OVER TIME

RF vs electron timing
 Stability at 50 ps

• μ and π compared with e time

STABILITY OVER TIME

RF vs electron timing
 Stability at 50 ps

- Gain Stability
 - stability of pedestal at few channels.

CALO Crystal 4 3

• μ and π compared with e time

STABILITY OVER TIME

RECENT MAJOR FINANCIAL INVESTMENTS

ltem	Groups	
CAEN HV	GW, UM, PSI, USC	\$75,000
PB Storage	Rutgers, ANL	\$45,000
Mesytec CFD & QDC	GW, Rutgers	\$40,000
Total		\$160,000

MISC. HARDWARE AND MAINTENANCE FOR 2023

System	Issue	
Beamline	Improved collimator (FS11, FS13) readback (request to PSI)	
BHC	Replace high current SiPMs or exchange BHC plane	
BHD	Install delay cables (will allow walk corrections)	
GEMs	Complete DAQ upgrade	
PV	Evaluate if WLS sufficient/positioning sufficient, adjust	
BMC	Investigate/replace low gain paddles (possible crazing).	
STT	Replace remaining old gas manifolds, re-enable cards	
SPS	Fix broken SPSF lower PMT	
	Additional source tests	
DAQ	QDC pedestal shifts, investigate Mesytec firmware from end October, v10.xxxxx	
	STT TRB TDC loss, while data was seen in scalers. Under investigation, immediate solution was to switch TRB FPGA	
	Data backup to tape	
DAQ-trigger	Timing test	
computer cluster	UPS selected, will be ordered	

BEAM REQUEST

- Request 6 <u>Contiguous</u> Months
 - Recent experience shows that each move into the area costs > 3 weeks of beam for calibrations, recommissioning, etc.
 - Earlier, shorter estimate was not based on experience

- Crane time & electronics
 - connections are quick (few days).
 - Data check out within 1-2 days

- Each move has risk of damage. (Crane operators are very careful, but just having more people around increases risk.)
- Move in prior to beam eliminates most (not all) of this time.
 - Each move requires a survey (hard to schedule)
 - best before run (not included in 3 weeks).

RUN PLAN

- Equal time on each beam momenta, 115, 160 & 210 MeV
- Equal time in each polarity

Target			
LH2	45%		
Empty	35%		
С	10%		
No Veto	3%		
SPS efficiency	3%		
No Target	3%		

- 2022 distribution of target time; expect similar in 2023
- Tune analysis on C target
- Provide slightly more events than 2022
 - Quicker startup if done during down time

SUMMARY: The MUSE spectrometer is ready to go!

- Straw Tube Tracker (STT)—repaired & operates reliably
- Target—Lakeshore communication has been solved.
- Target post vetos in place and operating.
- Computing resources/facilities in place.
- Minor maintenance activities in 2023
- Demonstrated system Stability
- Major advances in Analysis
 - Tracking, Calorimeter, Scintillators responses understood
 - Good agreement between Monte Carlo & data
 - Clean reconstructed vertices
 - Blinded C Cross Section more to implement

Request 6 Contiguous Months

540

530

520

t_{BF π} - t_{BF e} BHD

Analysis		
Analysis		
	Backup => Have to figure out details.	2nd copies of raw data are kept on site/different storage system
	Get data off-site	Current analysis model is using data on site
Tracking Straws		
	STT Hardware pressure interlock	Completed before 2022 run
	New metal manifold and o-rings	Completed before 2022 run
	Rebuild STT RH90 before beamtime 2022	Completed before 2022 run
	Replace broken straws.	Completed before 2022 run
Beamline		
	NO issues reported.	

Tracking GEM Check and improve seating of APV cards on US Did not remove beam telescope so APV's were not accessible GEM. Remove one GEM when 3 GEMs are proven to Maintained 4 GEM configuration for fall 2022 running be sufficient Complete MPD4 firmware update for dual word In progress packing. Add GEM HV to the MUSE Slow Control. Low priority Multi-sample analysis for GEM. Currently using clustering of time-averaged strips Track based alignment Software ready Tracking efficiencies at low and high rates In progress Further improvement of clustering, signal/noise, In progress. Masking and interpolation of hot and dead channels. 1D clusters now being stored before pairing X and Y. efficiency.

Timing Detectors & Calorimeter		
	Rare loss of QDC DC-offset;	Mesytec MQDC Firmware updated/downgraded
	Rare false reporting of rising and falling edges.	Handled by analysis used with 2022 data
	Transient and very brief departures of the HV from the set values	New CAEN HV system installed and used in 2022 run
	New CAEN HV modules	Completed and used in 2022 run
Target		
	Target Lakeshore Communication tests	New Lakeshore controller installed and used in 2022 run
	Upgrade Target monitoring GUIs for shift workers	Completed and used in 2022 run

Trigger & Electronics		
	Accelerator RF digitization with a new custom module;	Completed and used in 2022 run
	PID trigger adjustments;	Completed and used in 2022 run
	LUT tables adjustments based on survey.	Low importance, not complete
	Convert Veto and BM Triggers from NIM to FPGA.	Still using NIM triggers
	Trigger analysis and trigger configuration scripts;	Completed and used in 2022 run
	Purchase of spare QDCs and CFDs;	Completed and available in 2022 run (GW, Rutgers)
	Testing MEsytec VME controller;	M VME controller not appropriate for MUSE
	Edge flip in TRBs;	Handled in Analysis
	TRB3 stability;	Much improved, cause was buffer overflow in STTs for high- rate channels

