## A series of meetings on future $\mu \rightarrow e \gamma$ experiments

Francesco Renga, INFN Roma

## Scope of the meetings

- PSI is going toward the development of a High Intensity Muon Beam (HiMB) to be completed during a long shutdown in 2027-2028
- In 2021, PSI asked for the composition of a HiMB Science Case paper (arXiv:2111.05788)
  - some options for a next generation of  $\mu \to e \gamma$  experiments at 10<sup>9</sup> 10<sup>10</sup>  $\mu$ /s was presented
- On the basis of this work, a series of informal meetings was started in 2021 among people from MEG and Mu3e who contributed to the Science Case paper:
  - the main goal is to go deeper into these options, to identify and direct future R&D efforts that will be necessary to meet the requirements of such experiments
- In the meanwhile, a proposal for an Advanced Muon Facility (AMF) at FNAL was presented, that widen the interest on these activities

# The radial TPC option for e+e-tracking in future $\mu \rightarrow e\gamma$ experiments with photon conversion

Francesco Renga, INFN Roma

## Pair tracker requirements

- High efficiency on e+e- pairs down to a few MeV/c for the lowest momentum track and up to O(50 MeV/c) for the highest momentum track
  - efficiency loss ~ 20% if E<sub>min</sub> > 5 MeV
- Large angular acceptance
- Sum energy resolution O(100 keV)
- Scalability to multiple layers at a reasonable cost

## Gaseous detector options

- A gaseous detector for e+e- tracking can balance good resolutions, large acceptance and low cost requirements
- A stereo wire chamber can be problematic from the point of view of the geometry (see <u>here</u> for more details)



## Gaseous detector options

- A gaseous detector for e+e- tracking can balance good resolutions, large acceptance and low cost requirements
- A stereo wire chamber can be problematic from the point of view of the geometry (see <u>here</u> for more details)
- As an alternative a radial TPC can be considered
  - more uniform geometry
  - small drift distance w.r.t. a conventional, longitudinal TPC



## Strip vs. Pixel Readout



#### Stereo strip readout of thin-gap chambers



Doesn't work in a TPC due to track angle (several strips are on within the typical charge integration time of the electronics)



Suboptimal resolution with O(10cm) drift (R: diffusion up to O(1 mm) phi: strip granularity O(1/sqrt(12) mm))

## Readout of a radial TPC

#### Stereo strip readout with time-resolved CoG measurement



Good resolutions can be achieved (R: diffusion —> O(0.5 mm) phi: CoG —> O(0.1 mm) Z: CoG / sin(stereo) -> O(... mm))



CoG in bins of time (ideal binning depends on ionization density, ~ 50 ns, diffusion effect, ~ 25 ns, and electronics shaping time)

radial coordinate from precise time measurements

#### Requires electronics with:

- large digitization speed (>> 10 MSPS)
- short peaking time (<< 100 ns)</li>
- ~ 10 us digitization depth

|                        | PASA/ALTRO           | AGET                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Super-ALTRO          | SAMPA                |
|------------------------|----------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------|----------------------|
| TPC                    | ALICE                | T2K                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | ILC                  | ALICE upgrade        |
| Pad size               | $4x7.5 \text{ mm}^2$ | $6.9 \times 9.7 \text{ mm}^2$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | $1x6 \text{ mm}^2$   | $4x7.5 \text{ mm}^2$ |
| Pad channels           | $5.7 \times 10^5$    | $1.25 \times 10^5$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | $1-2 \times 10^6$    | $5.7 \times 10^5$    |
| <b>Readout Chamber</b> | MWPC                 | MicroMegas                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | GEM/MicroMegas       | GEM                  |
| Gain                   | 12 mV/fC             | 0.2-17 mV/fC                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 12-27 mV/fC          | 20/30 mV/fC          |
| Shaper                 | CR-(RC) <sup>4</sup> | CR-(RC) <sup>2</sup>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | CR-(RC) <sup>4</sup> | CR-(RC) <sup>4</sup> |
| Peaking time           | 200 ns               | 50 ns-1us                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 30-120 ns            | 80/160 ns            |
| ENC                    | 385 e                | 850 e @ 200ns                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 520 e                | 482 e @ 180ns        |
| Waveform Sampler       | ADC                  | SCA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | ADC                  | ADC                  |
| Sampling frequency     | 10 MSPS              | 1-100 MSPS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 40 MSPS              | 20 MSPS              |
| Dynamic range          | 10 bit               | 12 bit(external)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 10 bit               | 10 bit               |
| Power consumption      | 32 mW/ch             | <10 mW/ch                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 47.3 mW/ch           | 17 mW/ch             |
| <b>CMOS Process</b>    | 250 nm               | 350 nm                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 130 nm               | 130 nm               |
|                        |                      | the appropriate property of the second secon |                      |                      |

## **Simulation**

- A simplified Geant4 simulation was developed assuming:
  - ionization and electron transport properties of a He:isobutane mixture (not optimal, but gas properties already available from simulations with Garfield and measurements)
  - Design and response of BES-III cylindrical GEMs (strip pitch = 650 μm, strip width = 350/80 μm, avg. gas gain = 6000, dispersion of induced charge = 400 μm)
  - Reasonable parameters of electronics response, inspired by existing ASICs

650

600

700

X [mm]





## **Simulation**

- A simplified Geant4 simulation was developed assuming:
  - ionization and electron transport properties of a He:isobutane mixture (not optimal, but gas properties already available from simulations with Garfield and measurements)
  - Design and response of BES-III cylindrical GEMs (strip pitch = 650 μm, strip width = 350/80 μm, avg. gas gain = 6000, dispersion of induced charge = 400 μm)
  - Reasonable parameters of electronics response, inspired by existing ASICs





Resolutions are evaluated in two coordinates (w1, w2) in a virtual plane orthogonal to the track, with w2 almost parallel to z

• Ideal case (no diffusion, very fast signal shape and electronics)



 $\alpha$  = angle btw. track and radial direction

Resolutions are evaluated in two coordinates (w1, w2) in a virtual plane orthogonal to the track, with w2 almost parallel to z

Diffusion effect



 $\alpha$  = angle btw. track and radial direction

Resolutions are evaluated in two coordinates (w1, w2) in a virtual plane orthogonal to the track, with w2 almost parallel to z

Super-ALTRO specs



 $\alpha$  = angle btw. track and radial direction

Resolutions are evaluated in two coordinates (w1, w2) in a virtual plane orthogonal to the track, with w2 almost parallel to z

Optimized electronics (max. sampling and min. rise/fall time of existing ASICs)



 $\alpha$  = angle btw. track and radial direction

Resolutions are evaluated in two coordinates (w1, w2) in a virtual plane orthogonal to the track, with w2 almost parallel to z

Optimized electronics (max. sampling and min. rise/fall time of existing ASICs)



 $\alpha$  = angle btw. track and radial direction

Resolutions are evaluated in two coordinates (w1, w2) in a virtual plane orthogonal to the track, with w2 almost parallel to z

Reduced diffusion by 25%



 $\alpha$  = angle btw. track and radial direction

### Discussion

- Gaseous detectors could be a good option for pair tracking in the photon conversion detector
  - Large acceptance, relatively low cost
- A simplified simulation + reconstruction for a radial TPC with strip readout was performed
  - Resolution ~ 0.4-0.6 mm with O(1 hit/mm)
  - Significant improvement with time-resolved CoG (more important if a gas mixture with lower diffusion is used)
  - Largest uncertainties from signal shape, S/N ratio, charge distribution in the GEMs
- Development of dedicated electronics is probably necessary
  - Tailored to the capacitance of long strips
  - Optimized for the time-resolved CoG
- Another group in Rome is building a flat TPC with 5 cm drift + μRWELL with strips
  - Some experimental validation of the methods could be possible within this year