Speaker
Description
High-temperature superconducting cuprates are a model system to examine the relationship between intertwined quantum phases. The competition has, however, been difficult to tune with external stimuli without inducing superconducting vortices by a magnetic field at the same time. In our study, we show that $c$-axis strain couples directly to the phase competition between charge stripe order and superconductivity in La$_{2-x}$Sr$_x$CuO$_4$ (LSCO). To track the evolution of charge order upon application of strain at different temperatures, dopings, and magnetic fields, x-ray diffraction measurements were performed at DESY. We show, that compressive $c$-axis pressure enhances stripe order only within the superconducting state. The strain furthermore diminishes the magnetic field enhancement of stripe order. It thus provides a fruitful approach to study the interplay between superconductivity and charge order in the cuprates.