The demand for high-pressure equipment has doubled over the last decade at the Institut Laue-Langevin. To cope with this demand and ensure successful experiments, we have enhanced pressure generators and expanded our suite of pressure devices.
First, we have significantly improved the 1 GPa liquid pressure generators with:
- a comprehensive revamp of the automation program improving the...
Advanced high-pressure neutron scattering experiments demand a high neutron flux and precise phase space at small sample volumes, while maintaining a high signal-to-noise ratio. This work is dedicated to a comprehensive evaluation of background noise in high-pressure neutron scattering experiments, employing simulations and benchmark experiments. McStas 3.2 with the Union component is used to...
Strain in antiferromagnetic orthoferrite thin films is predicted to significantly change magnetic properties and result in a polar response up to room temperature. Orthorhombic DyFeO3 is of particular interest since the Fe-spins undergo a spin-reorientation with transition temperatures depending strongly on the Dy-Fe interaction and a magnetic field induced ferroelectric phase below...
High-temperature superconducting cuprates are a model system to examine the relationship between intertwined quantum phases. The competition has, however, been difficult to tune with external stimuli without inducing superconducting vortices by a magnetic field at the same time. In our study, we show that $c$-axis strain couples directly to the phase competition between charge stripe order and...
The demanding experimental conditions required to access the quantum critical behavior of many materials (including high magnetic fields, high pressures, and ultra-low temperatures), make their microscopic investigation often problematic. Over the years, techniques such as the nuclear magnetic resonance and muon-spin rotation/relaxation have emerged as complementary, well suited (and often...