PAUL SCHERRER INSTITUT

Filip Leonarski :: MX Data :: Paul Scherrer Institute

Contribute Project: Enabling compliance with ORD standards for cutting-edge time resolved experiments at high data-rates

Serial (synchrotron) crystallography

- Solving protein structure based on diffraction images of thousands of crystals
- Allows to observe protein dynamics
 - For example: visible laser «pump» and X-ray «probe»
- At PSI:
 - SLS: VESPA endstation @ X06SA
 - SwissFEL: Alvra, Crystallina
- Sample delivery via injector requires surplus of images
 - < 10% of images with proteins («hit»)</p>
 - -> 90% are only jet («miss»)

T. Weinert et al., *Science* (2019) https://doi.org/10.1126/science.aaw8634

- 50'000 images (hits) necessary x 5% hit rate =
 1'000'000 images collected
- One 4Mpixel image is approx. 1 MB (with lossless compression)
- At least 1 TB necessary for one single time point/ligand and many are needed
- With JUNGFRAU detector, 1 million images is collected in less than 10 minutes
- 100 TB / day is likely for SLS 2.0

MX data rate estimation till SLS 2.0 Leonarski et al., JSR (2023) https://doi.org/10.1107/S1600577522010268

Accelerated detector control unit (DCU) for high-data rate macromolecular crystallography

Jungfraujoch: hardware-accelerated data-acquisition system for kilohertz pixel-array X-ray detectors

Filip Leonarski, ^a« Martin Brückner, ^a Carlos Lopez-Cuenca, ^a Aldo Mozzanica, ^a Hans-Christian Stadler, ^b Zdeněk Matěj, ^c Alexandre Castellane, ^d Bruno Mesnet, ^d Justyna Aleksandra Wojdyla, ^a Bernd Schmitt^a and Meitian Wang^a

- Jungfraujoch data acquisition and analysis system
 - Funding by Innosuisse with DECTRIS (2023 – 2025)
 https://www.aramis.admin.ch/Grunddaten/?ProjectID=52074
- RED-ML project on GPU accelerated data processing algorithms to flag images on-the-fly
 - Science IT (PSI)
 - Funding by Swiss Data Science Center (2021 – 2023)
- These project provide technical solutions, but how about open research data?

Received 23 June 2022 Accepted 24 October 2022

Open research data principles are important for serial crystallography

- Relatively new technique
- Lot of method development still needed
- Handful of beamlines at synchrotrons and XFELs is capable of getting full potential of the method => <u>there is scarcity of test datasets for</u> <u>development</u>
- Multiple high-impact research results
 => there is interest within the community in reusability

Open research data in serial crystallography

- Strong community support for metadata «Gold Standard» (NXmx)
- Sample database for MX (HEIDI)
- Data catalogue from PSI (SciCat)
- Petabyte tape backup (CSCS)
- All these are fundamental for FAIR data, but it is not enough!

🖉 SciCat PSI	× +			-	0	>
C 🗅 https:/	//discovery.psi.ch/datasets/20.500.11935%2F44e A 🏠 🚺	DS	ଓ ☆	Ē		
			?	i	8	
atasets / 20.500.11935	5/44e91ab9-9ed5-4742-8a73-7834fbd0535e /					
🗮 Details	🚯 Datafiles 📄 Related Datasets 🗘 Lifecycl	le				
Jupyter Hub						
General Infor	mation		-	1		
Name	20181004/NA102I_Lyso5		A			
Description	Lysozyme crystal measured at 100 deg/s with JUNGFRAU 4M		- n	1		
PID	20.500.11935/44e91ab9-9ed5-4742-8a73-7834fbd0535e		Jungfr MX	au setup	p at	
Туре	raw					
Creation Time	2018-10-04 22:57					
Keywords						
Creator Inform	mation		Ĩ			
Owner	Filip Leonarski					
Owner Group	p16371					
Access Groups	slsmx					
File Informati	on					
Source Folder	/mnt/zfs/e16371/20181004/NA102I_Lyso5					
Size	149 GB					
Data Format	ILINGERALL raw (binan)					

Gold Standard for macromolecular crystallography diffraction data

Herbert J. Bernstein,^a* Andreas Förster,^b Asmit Bhowmick,^c Aaron S. Brewster,^c Sandor Brockhauser,^{d,e,f} Luca Gelisio,^g David R. Hall,^h Filip Leonarski,ⁱ Valerio Mariani,^g Gianluca Santoni,^j Clemens Vonrhein^k and Graeme Winter^h

https://doi.org/10.1107/S2052252520008672

- Real life example:
 - 45 TB time-resolved KR2 protein data collected at MAX IV in Dec 2021
 - 73 datasets / 3745 data files / ~30 million images
- If uploaded to SciCat with the current workflow...
- ...would such dataset be <u>findable</u>?
 - Metadata describe experimental conditions, but not content
 - (e.g. some files were collected without jet running)
- ...would such dataset be accessible?
 - For us at PSI yes
 - For other large research facilities maybe
 - For outside users unlikely

How to improve serial crystallography FAIR principle compliance?

- Focus on the scientific content of the data
- Add hit rate to the metadata of each dataset (both NXmx and SciCat)
 - One can easily find promising datasets
- Create reduced datasets with hits only
 - Order of magnitude lower download and processing time for accessibility
 - Miss images are not lost
- <u>Perform both functionalities automatically, as</u> <u>part of beamline pipeline</u>

Contribute ORD Project

- 1 year: January December 2023
- Scale-up spot finding and indexing in Jungfraujoch to flag every image on-the-fly with new inference grade GPUs

 ORD project allows to fund 2 new GPUs
- Develop scripts for generation of hit-only HDF5 data file and metadata for SciCat
- Convince community to include hit/miss information in NeXus/NXmx metadata

 ORD project allows to join IUCr Congress and present contributed talk

- High data rates are challenging not only for IT infrastructure, but require new solutions in FAIR data
- Contribute project will provide a proofof-concept for a workflow combining high-data rates and open research data principles

Acknowledgements

- SLS MX Group
- ETH Domain for Open Research Data funding
- A. Ashton, M. Erat, O. Bunk, J. Wojdyla and PSI ORD Team for support in the application phase
- SLS MX VESPA, BioMAX and Standfuss Group (LBR) for test data
- Science IT, SDSC, and CSCS for work on fast image processing algorithms for MX – H.-C. Stadler

