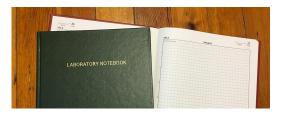


Giovanni Pizzi :: Group Leader "Materials Software and Data" :: Paul Scherrer Institute

ORD-R Establish "PREMISE" project: "Open and Reproducible Materials Science Research"

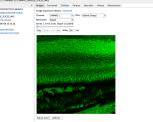

ORD meeting, PSI, 4 May 2023

State of the art and challenges

Typical scenario in Materials Science

Experiments

Simulations


sses: 430 tot Avg: 7.88, 15							10:55 8% 1d	
						1453M s		
						swapou		
	H rea	1, 65994/		en.				
COMMAND								
		80:01.99						
		80:00.35						
		80:04.62						
AXVisualSupp		80:17.66						
		80:22.54						
Macs Fan Con		80:28.87						
		80:12.28						
coreaudiod		80:18.89						
		80:04.50						
		80:04.20						
launchservic		80:02.98			2828K+			1

Better scenario

But how to interchange data between experiments and simulations using common metadata formats?

ELN/LIMS

- Establish, promote and facilitate the **adoption of FAIR ORD practices** in Materials Science.
- Provide missing critical components to enable open and reproducible research (accessible, shareable)
- Address interoperability between data from simulations and experiments (currently: no established RDM practices)
- Key enabler of **emerging AI/ML-driven autonomous laboratories**, with native support for RDM and ORD practices

Partners and technology

- Partners
 - PSI: Pizzi (lead)
 - ETHZ: Rinn, Barillari, Lütcke

- + @PSI: Dr. Edan Bainglass post-doc, from Apr 2023
- Empa: Pignedoli (microscopy); Battaglia (robotic battery experiments)
- Start date: 1 April 2023
- Exploit existing ORD platforms in the ETH domain

ELN + LIMS (ETHZ) Reproducible experiments WF Manager + GUI (PSI, and also Empa/EPFL) Reproducible simulations

Both focused on tracking the whole provenance and ensuring reproducibility!

- COMPUTATIONAL SCIENCE INFRASTRUCTURE
- FOR HIGH THROUGHPUT WORKFLOWS
 - WITH FULL DATA PROVENANCE

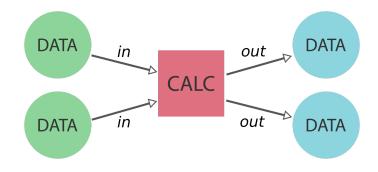
Language: implemented and API in pythonLicense: MIT open source http://www.aiida.net/Source: https://github.com/aiidateam/aiida-core

Scalable workflow engine: robustness

Built-in support for HPC: performance

Automated full data provenance: reproducibility

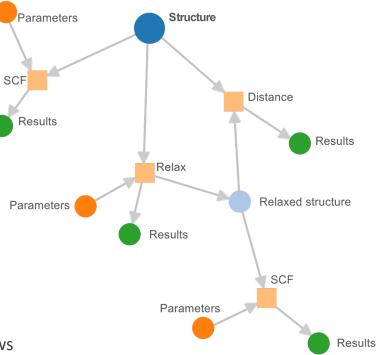
Flexible plugin system: interoperability



G. Pizzi et al., Comp. Mat. Sci. 111, 218-230 (2016) S.P. Huber et al., Scientific Data 7, 300 (2020)

Simple recipe

- Store data transformations or 'calculations'
- Store its inputs and their metadata
- Store its **outputs** and their metadata
- Most crucially store the inter-connections

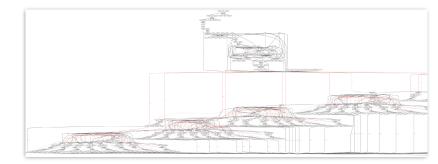


Simple recipe

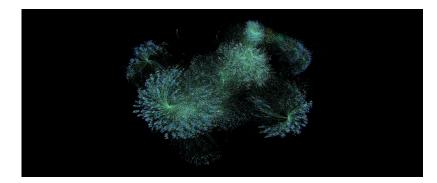
- Store data transformations or 'calculations'
- Store its inputs and their metadata
- Store its outputs and their metadata
- Most crucially store the inter-connections

Provenance graphs

- When data gets reused, a directed graph is created
- That quickly grow in complexity even for "simple" workflows


Simple recipe

- Store data transformations or 'calculations'
- Store its inputs and their metadata
- Store its outputs and their metadata
- Most crucially store the inter-connections


Graph requirements

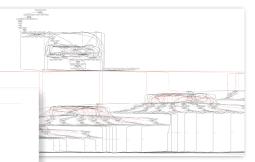
- Needs to be automated
- Needs to be stored as data is created

Complexity grows quickly even for simple workflows and is impossible to reconstruct *a posteriori*

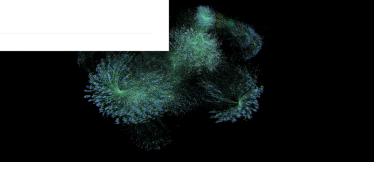
Molecular dynamics study of Lithium in a solid electrolyte

Graphical representation of actual AiiDA database

Simple recipe


- Store data transforma
- Store its inputs and tl
- Store its outputs and
- Most crucially store t

Graph requireme


- Needs to be automated
- Needs to be stored as data is created

Complexity grows quickly even for simple workflows and is impossible to reconstruct *a posteriori*

Similar concepts apply with openBIS (for experiments)

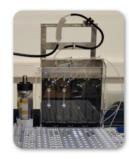
of Lithium in a solid electrolyte

Graphical representation of actual AiiDA database

AiiDAlab Access to advanced simulations for everybody

21	ıbmit	: calc	ulatio	n			Edit App	Logout	
	 Step 1: Select st 	ructure							
	Select a structure from	one of the following so	urces and then click "Confi	firm" to go to the next ste	ap.				
	Currently only three-	dimensional structures	are supported.						
	Upload file	OPTIMADE	AiiDA database						
			1	Upload Structure (1)					
	Supported structure	formats							
			/		Selection Appearance Cell	Download			
					Super cell: E E 1				
					Background white				
		A A A A			Camera type: Orthographic	Perspective			
	-	~~~~	Sesa.		Center molecule				
	Label I2Ni		Description						
	Selected: I2Ni								
				Confirm					

https://www.materialscloud.org/work/aiidalab


- GUI exposing workflows also to non experts
- Example: AiiDAlab app (GUI) to run Quantum ESPRESSO simulations (DFT simulations: relaxation, bands, density of states, ...)
- We are working to make more apps to predict experiments run at PSI (e.g. XPS, XAS, ...)

PAUL SCHERRER INSTITUT

PREMISE structure: structure and workpackages

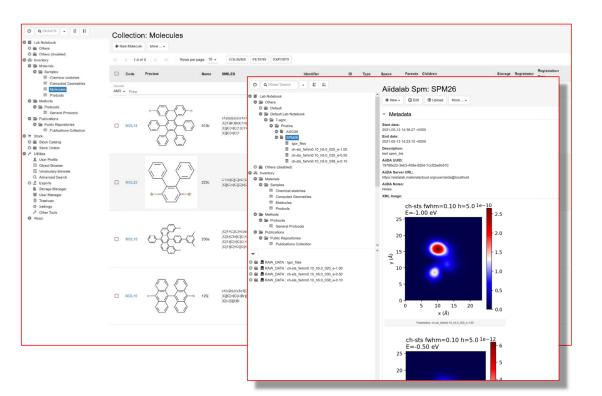
Enabling seamless integration of open data from experimental and simulation workflows

WP2 Open data from simulation-assisted experimental interpretation

PREMISE Open and Reproducible Materials Science Research

WP5 Project management and outreach

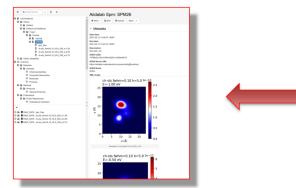
WP4 Enabling reproducible and accessible materials experiments and simulations Open data from workflow-driven robotic experiments



Usecase 1: Combining the two worlds

(in collaboration with Pignedoli @ Empa)

- *Task:* identify the adsorption configuation of a molecule on a surface.
- Often this is done by comparing experimental and simulated STM images.
- To enable comparison we need to ensure a seemless data transfer from an ELN to AiiDAlab and back.



Usecase 1: Combining the two worlds

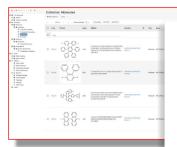
(in collaboration with Pignedoli @ Empa)

openBIS ELN: list of molecules

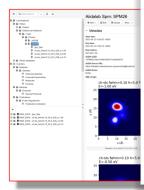
openBIS ELN: imported simulated STM image

AiiDAlab: imported molecule

AiiDAlab: simulated STM image



AiiDAlab: list of completed simulations



Usecase 1: Combining the two worlds

(in collaboration with Pignedoli @ Empa)

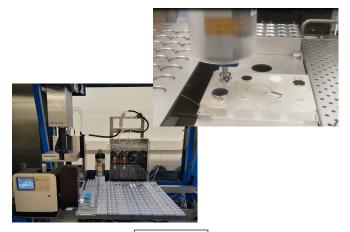
openBIS ELN: list of mole

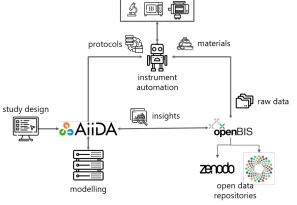
Challenges

- Develop metadata formats that can accommodate experiments and simulations, link them to ontologies
- Ensure that the provenance on the two sides is properly linked
- Make it easy for researchers

~				
ace separate	d)			
14				
	To: 2022	2-07-20		
				_
		EnormaleVO	Structure	Extras
	Calculation name	Ellergy(ev)		

completed simulations


openBIS ELN: imported simulated STM image


AiiDAlab: simulated STM image

Usecase 2: Robotic experiments toward autonomous labs

- Empa (Prof. Corsin Battaglia): robotic setups to
 - assemble coin cells (batteries) changing formulations (32+ channels)
 - perform cyclic testing (128 channels, soon 256)
- Collaboration started within the Battery2030+ BIG-MAP project, now continuing in PREMISE
 - Goal:
 - Both robotic experiments and simulations driven by our workflow engine *AiiDA*
 - Experimental+simulation data stored in the same ELN: *OpenBis (ETHZ)*
 - Designed from the ground to be an open and reproducible materials-science research platform enabling future autonomous labs

Usecase 2: Robotic experiments toward autonomous labs

• Empa

• Goal

• Bo

• Exp

Desi

repro enab

by

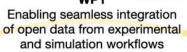
ELI

- ass for Challenges
- pe Automate experiments

- Take care of security requirements at the institutions to access hardware
 - Create appropriate digital twins:
 - Simulations can be run many times on same input, but experiments change the history of a sample
 - Many-to-many relation between simulation inputs (e.g. gold crystal structure) and samples (e.g. gold samples)

benBIS

raw data آریکا


However: focus on generality

- Build on strength and maturity of AiiDA and openBIS
 - both developed in ETH domain
 - *both focused on ORD+reproducibility*
- Combine them and use the two scientific use cases @Empa to demonstrate and stress-test the concepts
- However, generality of the project: ensure extensibility to other software and other research projects

PREMISE structure: summary

WP2 Open data from simulation-assisted experimental interpretation

PREMISE Open and Reproducible Materials Science Research

WP5 Project management and outreach

WP4 Enabling reproducible and accessible materials experiments and simulations Open data from workflow-driven robotic experiments

· Install coloring		
+ lagency-brance		
+ Vendor Reals		
Results Vecalization		
-		
	iii ii	- Contractory
1. WWWWWW	-	1
	-	1.