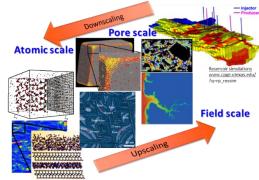

George <u>Dan</u> Miron :: Tenure Track :: Laboratory for waste management :: NES PSI dan.miron@psi.ch


THRACE: Traceable thermodynamic datasets for chemical modelling

Laboratory for waste management (part of NES)

- Laboratory for waste management scientific basis for the safe geological disposal
 of radioactive waste
- Use of **geochemical modeling** for gaining fundamental understanding of chemical processes in natural and engineered geochemical systems.

Geochemical modeling and tools

Thermodynamic models

relations between thermodynamic properties, calculation of measurable properties

Thermodynamic datasets

actual values of thermodynamic properties (compilation, derivation, consistency, errors, bookkeeping)

https://gems.web.psi.ch/

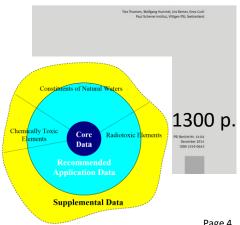
Modeling tool package

chemical equilibrium speciation solver code

Tools and datasets at PSI-LES

Open-Source GEMS codes

- Developed at LES PSI since early 2000s
- Open source (C++/Python) powerful research tool
- 900+ active users in geochemical community
- Do it all geochemical modeling tool (monolith)


The PSI/Nagra Chemical Thermodynamic database

- State of the art compilation of thermodynamic data
- Critical in-house reviews and data assessments (since 1990)
- Support in safety assessment for the planned repository
- Monumental work detailed in lengthy reports

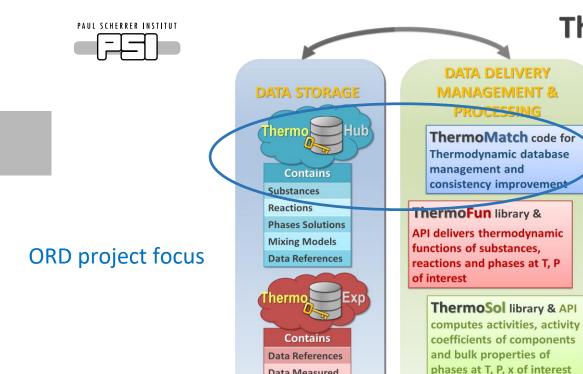
I am a member in the development teams and responsible for future development of GEMS and TDB) https://gems.web.psi.ch/

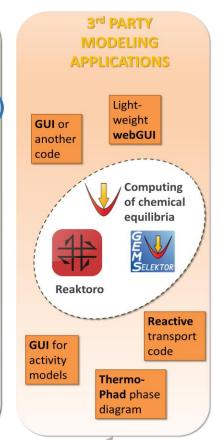
Nuclear Energy and Safety Research Department Laboratory for Waste Management (LES)

Page 4

Problems/questions of a modeler

Appropriate code and database package for my application? What thermodynamic data should I use? What sources do data come from, how was it compiled/derived? What is the **quality** of the data, errors? **How can I use it** in a modeling code? How to compare alternative models and datasets? How can I manage (Create, Read, Update, Delete, Search) the thermodynamic database? How can I import/export the data? Is there a way to **check formal consistency** between properties? How can I retrieve new sets of internally consistent parameters? Developer issues ☐ Lack of funding, staff support (IT engineer technicians like lab technicians) Usually in-kind development, 3rd party secondary support through main scientific projects


Not yet



https://themohub.org Collaborative work in progress

Data Measured

Experiment Set

ThermoFit code for

TDB global

consistency

improvement

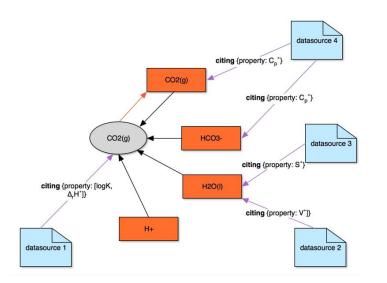
parameter Optimization &

GEMSFITS

Data Derived

Experiment

Fitting Task


Fitting Result

https://github.com/thermohub

- Is an **online property graph database** that stores thermodynamic datasets
 - Stores various type of structured data
 - Flexible structured format (JSON) storage of diverse data types (schemas)
 - Data consistency and traceability through property graph links
 - Easy-access local or remote (cloud) storage

- psinagra-12-07 1 waste disposal
- slop98-inorganic and slop98-organic | ² aqueous geothermal (revised SUPCRT92)
- **cemdata18** | ³ suitable for cement systems
- heracles | 4 modeling of U and fission products
- mines16 5 modeling magmatic-hydrothermal ore forming processes
- aq17 $^{\circ}$ modeling fluid rock interaction at hydrothermal conditions
- slop16 ⁷ aqueous geothermal (organic and inorganic)

- Main data management operations: Querying Editing Importing Exporting
- Queries and import/export scripts as user-defined JSON documents that can also be saved into the ThermoHub database
 - Define a format file that matches the data fields of the imported file to those in our own data format
 - Import from foreign formats: structured data, text stream, key-value, or CSV
 - Define a reverse match to export data from the database format into other formats

Aim of the contribute project

- Bring ThermoHub to its full potential and demonstrate its ORD/FAIR
- Ensure the consistency traceability of thermodynamic datasets
- A unified thermodynamic database in a general JSON format, with datasets ready to use for geochemical modelling applications
- Some mainstream databases used in chemical modeling, to be curated and imported to ThermoHub during the work proposed in the project
- Writing and adapting the import export scripts
- Adapting the JSON schemas of data and metadata
- Setting up an automatic suite of tests for the import/export procedure
- Semiautomatic workflow for contributing to the ThermoHub database after the end of the project

Contains

Substances

Reactions

Phases Solutions

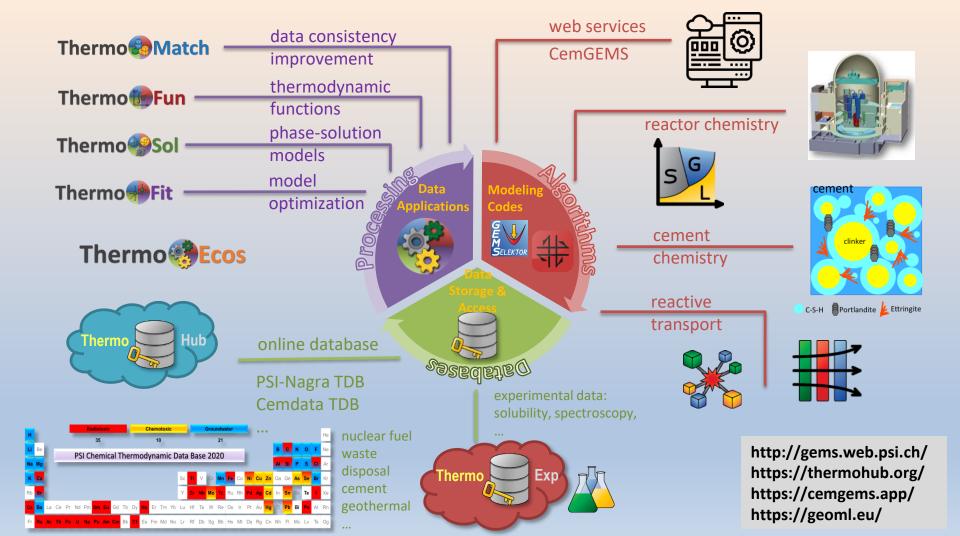
Mixing Models

Data References

Future vision

High-quality traceable thermodynamic data and tools for accurate (geo)chemical modeling of real-world scenarios.

- Open Research Data: Databases, code tools and web services for chemistry and thermodynamic modelling.
- Databases for experiments and thermodynamic data
- Tools for optimization and prediction, chemical modeling
- Microservices and web applications, tuned for specific application.
 Running locally or in the cloud.


We create knowledge today – for use tomorrow

Acknowledgments:

ORD PSI and ETHZ
LES/NES
Dmitrii Kulik
Barbara Lothenbach

Sergey Churakov

