Development of

nanosecond-timescale beam-based feedback systems for single-pass beamlines

Philip Burrows

John Adams Institute

Oxford University

Outline

- Intra-train beam feedback system concept
- Designs for ILC + CLIC interaction regions
- Prototype hardware development (FONT systems)
- Other applications
- Summary

Feedback On Nanosecond Timescales

- Philip Burrows Glenn Christian *Javier Resta Lopez* Colin Perry
- PhD students: Douglas Bett Alexander Gerbershagen Michael Davis Neven Blaskovic Simon Jolly → RAL, UCL Steve Molloy → SLAC, ESS Christine Clarke → SLAC Christina Swinson → BNL Ben Constance → CERN Robert Apsimon → CERN

Valencia, CERN, DESY, KEK, SLAC

Philip Burrows

Next-generation e+e- collider

- Exploitation machine for new physics revealed at LHC, eg. 'Higgs boson factory'
- International Linear Collider (ILC)
 500 1000 GeV
- Compact Linear Collider (CLIC) 3000 GeV (500 \rightarrow 5000 GeV?)
- Laser and beam-driven concepts for TeV-scale colliders based on plasmas

International Linear Collider

Compact Linear Collider (CLIC)

Concept for beam-driven Plasma Wake Field TeV Linear Collider

Concept of TeV e+e- collider based on laser-plasma acceleration

Wim Leemans and Eric Esarey, Physics Today, March 2009

ILC Reference Design Report (Feb 2007)

Feedback On Nanosecond Timescales

• Intra-train feedback systems for ILC and CLIC

Feedback On Nanosecond Timescales

- Intra-train feedback systems for ILC and CLIC
- Ring-Linac feed-forward: correct for DR extraction

International Linear Collider

Feedback On Nanosecond Timescales

- Intra-train feedback systems for ILC and CLIC
- Ring-Linac feed-forward: correct for DR extraction
- End of linac 'train-straightener'

International Linear Collider

Feedback On Nanosecond Timescales

- Intra-train feedback systems for ILC and CLIC
- Ring-linac feed-forward: correct for DR extraction
- End of linac 'train-straightener'
- Interaction point: collision feedback

International Linear Collider

Feedback On Nanosecond Timescales

- Intra-train feedback systems for ILC and CLIC
- Ring-linac feed-forward: correct for DR extraction
- End of linac 'train-straightener'
- Interaction point: collision feedback
- CLIC drive beam phase feed-forward

Compact Linear Collider (CLIC)

Beam parameters

	ILC (500)	CLIC (3 TeV)	
Electrons/bunch	0.75	0.37	10**10
Bunches/train	2820	312	
Train repetition rate	5	50	Hz
Bunch separation	308	0.5	ns
Train length	868	0.156	us
Horizontal IP beam size	655	45	nm
Vertical IP beam size	6	0.9	nm
Longitudinal IP beam size	300	45	um
Luminosity	2	6	10**34

Beam parameters

	ILC (500)	CLIC (3 TeV)	
Electrons/bunch	0.75	0.37	10**10
Bunches/train	2820	312	
Train repetition rate	5	50	Hz
Bunch separation	308	0.5	ns
Train length	868	0.156	us
Horizontal IP beam size	655	45	nm
Vertical IP beam size	6	0.9	nm
Longitudinal IP beam size	300	45	um
Luminosity	2	6	10**34

Feedback On Nanosecond Timescales

- Intra-train feedback systems for ILC and CLIC
- Ring-linac feed-forward: correct for DR extraction
- End of linac 'train-straightener'
- Interaction point: collision feedback
- CLIC drive beam phase feed-forward
- \rightarrow Must operate with latency

O(10ns) (CLIC) and O(100ns) ILC

Luminosity

$$L = f_{rep}n_b \frac{N^2}{\pi \sigma_x \sigma_y}$$

- Nnumber of particles in each bunchn_bnumber of bunches per beamf_reprepetition frequency of bunchessigma_x *transverse area of bunches
- Number passing per unit time per unit area ('flux')
 22

Beam parameters

	ILC (500)	CLIC (3	TeV)
Electrons/bunch	0.75	0.37	10**10
Bunches/train	2820	312	
Train repetition rate	5	50	Hz
Bunch separation	308	0.5	ns
Train length	868	0.156	us
Horizontal IP beam size	655	45	nm
Vertical IP beam size	6	0.9	nm
Longitudinal IP beam size	300	45	um
Luminosity	2	6	10**34

Ground motion measurements

Vibrations of Final Focus

SLAC Linear Collider (SLC)

Data from SLAC

Integrated vertical r.m.s. motion between 2 points 10m apart, vs frequency

Data from SLAC

Vibrations of Final Focus

LC intra-train feedback system - concept

FONT – Feedback On Nanosecond Timescales

General considerations (1)

Collision optimisation – based on beam-beam deflection:

1. Interaction point position feedback:

hardware located near IP

kicker at 90 degrees w.r.t. IP

2. Interaction point angle feedback:

hardware ideally located near IP kicker in phase w.r.t. IP

3. Additional (feed-forward) inputs:

information from alignment systems (eg. QD0 etc.) information about beam from upstream in machine (eg. DR)

Luminosity optimisation – based on measured luminosity: fast luminosity signal (from BEAMCAL)

General considerations (2)

Time structure of bunch train:

ILC (500 GeV):	C.	3000	bunches	w.	C.	300 ns	separation
CLIC (3 TeV):	с.	300	bunches	w.	C.	0.5 ns	separation

Feedback latency:

ILC: O(100ns) latency budget allows digital approach CLIC: O(10ns) latency requires analogue approach

Recall speed of light: c = 30 cm / ns:

FB hardware should be close to IP (especially for CLIC!)

Two systems, one on each side of IP, allow for redundancy

IP position feedback latency

Latency:

1. Beam flight time IP \rightarrow BPM

- 2. Signal processing, FB calculation
- 3. Amplifier + kicker response time
- 4. Cable delays
- 5. Beam flight time kicker \rightarrow IP

IP FB Design Status: ILC

Conceptual design documented in ILC RDR (2007), fleshed out since:

1. IP position feedback:

provide IP beam position correction at +- 50 sigma_y level i.e. +- 300 nm of vertical beam motion at IP

- 2. IP angle feedback: hardware located few 100 metres upstream conceptually very similar to position FB, (arguably) less critical
- 3. Bunch-by-bunch luminosity signal (from BEAMCAL)

'special' systems requiring dedicated hardware + data links

More realistic engineering design now in progress for TDP document (2012)

ILC IR: SiD for illustration

Philip Burrows

Final Doublet Region (SiD for illustration)

Philip Burrows

PSI seminar 27/2/12
Final Doublet Region (SiD for illustration)

Philip Burrows

PSI seminar 27/2/12

ILC IP intra-train FB performance

ILC prototype: FONT4 at KEK/ATF

IP FB Design Status: CLIC

Conceptual design developed and documented in CLIC CDR (2011)

NB primary method for control of beam collision overlap is via vibration isolation of the FF magnets, and dynamic correction of residual component motions

IP position feedback:

provide IP beam position correction of +- 50 nm of vertical beam motion

More realistic engineering design can be developed in next project phase

Geneva

Central MDI & Interaction Region

Lake Geneva

CLIC: zoom-in to QD0

CLIC Final Doublet region

CLIC Final Doublet region

CLIC Final Doublet region

Luminosity performance with IP FB

Resta Lopez

Simulation time structure: Example applying a single random seed of GM C

Luminosity performance with IP FB

Resta Lopez

For noisy sites:

Model C:

- Without any correction: mean L/L_{0 train}=30.52% & High standard deviation!
- With IP-FB: mean L/L_0 train=64.15% std reduced by a factor 2

Model K:

- Without any correction: mean L/L_0 train=32.53% & High standard deviation!
- With IP-FB: mean L/L_{0 train}=67.82% std reduced by a factor 3

CLIC prototype: FONT3 at KEK/ATF

Remaining technical issues

- Engineering of real hardware optimised for tight spatial environment: BPM, kicker, cables ...
- Large (and spatially-varying) B-field → operation of ferrite components in kicker amplifier?!
- Further studies of radiation environment for FB system: was studied for ILC, so far preliminary for CLIC;

where to put electronics?

need to be rad hard? shielded?

• RF interference: beam $\leftarrow \rightarrow$ FB electronics

kicker $\leftarrow \rightarrow$ detector

Off-shelf BPM

Off-shelf kicker

BPM processor

FB board

Drive amplifier

A pragmatic approach!

A pragmatic approach!

Prototyping status

Generic prototype layout

Brief prototype history: CLIC

CLIC-relevant: all-analogue systems

Brief prototype history: CLIC

CLIC-relevant: all-analogue systems

NLCTA (SLAC): 65 MeV beam, 170ns train, 87ps bunch spacing

FONT1 (2001-2):

First demonstration of closed-loop FB: latency 67ns

10/1 beam position correction

FONT2 (2003-4):

Improved demonstration of FB: latency 54ns

real time charge normalisation with logarithmic amplifiers beam flattener to straighten train profile solid-state amplifier

ATF (KEK): 1.3 GeV beam, 56ns train, 2.8ns bunch spacing

FONT3 (2004-5): Ultra-fast demonstration of FB: latency 23 ns 3 stripline BPMs high-power solid-state amplifier

Philip Burrows

FONT2 beamline installation at SLAC NLCTA (65 MeV 170ns-long train @ 87ns spacing)

FONT: kicker driver amplifiers

FONT1 3-stage tube amplifier

FONT3 PCB amplifer + FB

Philip Burrows

Same drive power as needed for CLIC

PSI seminar 27/2/12

FONT2 results

Philip Burrows

64

PSI seminar 27/2/12

Brief prototype history: CLIC

- **CLIC-relevant: all-analogue systems**
- FONT2 (2003-4):
 - latency 54ns
 - would allow about 2 correction passes for CLIC 150ns train

FONT3: latency budget

•	Time of flight kicker – BPM:	4ns
•	Signal return time BPM – kicker:	6ns
	Irreducible latency:	10ns
•	BPM processor:	5ns
•	Amplifier + FB:	5ns
	Electronics latency:	10ns
•	Total latency budget:	20ns

Allows 56/20 = 2.8 periods during bunchtrain

Fast analogue signal processors

2005

Philip Burrows

2006

67

2007

PSI seminar 27/2/12

BPM processor architecture

FONT3: kicker driver amplifier

Philip Burrows

PSI seminar 27/2/12

FONT3: BPM processor + amplifier/feedback installation in ATF beamline

BPM processor board

PSI

mar 27/2

FONT3: Beamline Installation

Philip Burrows

FONT3: Results (June 2005): Delay-loop feedback w. latency 23 ns

CLIC prototype: Summary

Philip Burrows

PSI seminar 27/2/12

Brief prototype history: CLIC

- **CLIC-relevant: all-analogue systems**
- FONT3 (2005):
 - total latency 23ns, of which 13ns electronics
 - translates to about 37ns at CLIC would allow about 3 correction passes for CLIC 150ns train

basic principle demonstrated: more work needed to optimise design + system performance.

Brief prototype history: ILC

ILC-relevant: digital feedback processor

Generic prototype layout: ILC

Brief prototype history: ILC

ILC-relevant: digital feedback processor

ATF (KEK): 1.3 GeV beam, 3-bunch train, bunch spacing c. 150ns

FONT4 / ATF (2006-9): First digital system (Virtex 4): latency 148 ns high-power solid-state amplifier (pulse length up to 10us)

FONT5 / ATF2 (2009-10): Faster system (Virtex 5): latency 133 ns coupled-loop system correction of y and y' 3 BPMs and 2 kickers

FONT4 ILC prototype at KEK/ATF

Philip Burrows

PSI seminar 27/2/12

Kicker driver amplifier

Specifications:

- +- 15A (kicker terminated with 50 Ohm)
- +- 30A (kicker shorted at far end)
- 35ns risetime (to 90%)
- pulse length 10 us (specified for 20-60 bunches)
- repetition rate 10 Hz

Outline design done in Oxford Order placed with TMD Technologies Sept 06 Two prototype units delivered Dec 06 Tested numerous times with beam in 2007 Modifications made 3rd unit purchased in 2009

• FONT4 basic operation demonstrated in 2008 running:

PSI seminar 27/2/12

FONT4 results

• FONT4 basic operation demonstrated in 2008 running:

→ beam feedback along single axis (y) with few micron resolution

FONT5 location

Flexible operation mode

Philip Burrows

FONT5 hardware

3 new BPMs and 2 new kickers installed in new ATF2 extraction line February 2009

Valencia FONT BPM movers

Philip Burrows

New FONT5 digital FB board

Xilinx Virtex5 FPGA

9 ADC input channels (TI ADS5474)

4 DAC output channels (AD9744)

Clocked at 357 MHz phase-locked to beam

4x faster than FONT4

FONT5 DAQ

- One damping ring cycle (463ns) data returned each pulse:
- RS232 over ethernet
- All BPM sum (charge) and difference signals
- Absolute sample time adjustable in 70ps taps: accurate peak sampling
- Ratio of difference to sum peaks gives y-position
- Pedestal subtraction
 w. on-board trim DACs
 (no latency gain)

FONT5 latency: P2 → K1 loop

Latency estimate

•	Time of flight kicker – BPM:	12ns
•	Signal return time BPM – kicker:	32ns
	Irreducible latency:	44ns
•	BPM processor:	10ns
•	ADC/DAC (4.5 357 MHz cycles)	14ns
•	Signal processing (8 357 MHz cycles)	22ns
•	FPGA i/o	3ns
•	Amplifier	35ns
•	Kicker fill time	3ns
	Electronics latency:	87ns
•	Total latency budget:	131ns

P2 → K1 loop performance

P2 → K1 loop performance

$P2 \rightarrow K1$ loop jitter reduction

13 um \rightarrow 5 um \rightarrow 3 um

$P2 \rightarrow K1$ loop jitter reduction

2.1 um \rightarrow 0.4 um

Factor of 5 jitter reduction

$P2 \rightarrow K1$ loop jitter reduction

Bunch correlations

Bunch 1

Bunch 1

FB correction vs. gain

Philip Burrows

PSI seminar 27/2/12

Bunch correlations vs. gain

BPM processor resolution tests

3 BPM processors (5,7,10) on BPM P2 25/10/11 8-hour shift: **0.55 0.56 0.60** μm **0.56 0.54 0.51** μm **0.53 0.40 0.35** μm **0.50 0.35 0.33** μm **0.45 0.44 0.35** μm **0.50 0.43 0.36** μm Beam position jitter 3-4 µm

BPM processor resolution tests

3 BPM processors (5,7,10) on BPM P2 25/10/11 8-hour shift: **0.55 0.56 0.60** μm expectation from **ADC noise alone: 0.56 0.54 0.51** μm **0.53 0.40 0.35** μm 0.5 **0.50 0.35 0.33** μm 0.45 0.4 **0.45 0.44 0.35** μm 0.35 0.3 **0.50 0.43 0.36** μm 0.25 0.2 Beam position jitter 3-4 µm 0.15

01

1200

1400

1600

1800

2000

2200

proc5 proc7

proc10

Gain matrix

G (K1 - P2) G (K1 - P3)

G (K2 - P2) G (K2 - P3)

Uncoupled loop gain scans

Uncoupled loop gain scans

Coupled loop gain scans

Coupled loop gain scans

(example FB Run 6 13/12)

bunch	1	2
	FB off	FB off
Jitter P2	3.42	3.42
P 3	3.24	3.21

(example FB Run 6 13/12)

(example FB Run 6 13/12)

bunch	1		2	
	FB off	on	FB off	on
Jitter P2	3.42	3.39	3.42	0.64
P3	3.24	3.16	3.21	1.04

(example FB Run 6 13/12)

bunch	1		2		
	FB off	on	FB off	on	Pred.
Jitter P2 1-2 correl	3.42 98%	3.39	3.42	0.64	0.67
P3	3.24	3.16	3.21	1.04	
1-2 correl	97%	2 2	2		0.83

$$\sigma_{2}'^{2} = \sigma_{1}^{2} + \sigma_{2}^{2} - 2\sigma_{1}\sigma_{2}\rho_{12} \ge 2\sigma_{r}^{2}$$

- Intra-train beam feedback concept well advanced
- Conceptually-engineered designs for ILC + CLIC
- All-analogue prototypes (CLIC) developed and tested at NLCTA + ATF:

→ electronics latency c. 13ns

 Digital prototypes developed and tested at ATF + ATF2:

→ electronics latency c. 90ns

- Conceptual design for CLIC phase feed-forward
- Techniques generally applicable

Compact Linear Collider (CLIC)

CLIC drive beam phase FF

Basic idea: Measurement of phase and energy error in front of the loop, phase correction behind the loop by adjusting deflection in the second chicane.

A Preliminary System Concept

- +- 375 urad kick at each bend
- 0.5% energy spread, 1m dispersion -> 5mm rms
- beam pipe diameter >> 50mm
- 4 kickers at each bend
- > 400kW peak power amplifier to each kicker

CTF3 phase FF prototype

Beam tracking simulations

(Javier Resta Lopez)

Macroparticle tracking through the BDS using the code PLACET Luminosity calculation using the code Guinea-Pig

Ground motion:

- In the following simulations we apply 0.02 s (corresponding to f_{rep} =50 Hz) of GM (A. Seryi's models) to the CLIC BDS
- What is the RMS vertical beam-beam offset at the IP we have to deal with?
 - Simulation of 100 random seeds:

GM model	rms Δy^* [nm] (in units of σ_y^*)
A (CERN)	0.035 (0.04)
B (SLAC and FNAL)	0.47 (0.52)
C (DESY)	8.9 (9.9)
K (KEK)	6.4 (7.1)

Luminosity performance with IP FB

Philip Burrows

CLIC luminosity result with IP FB

The generated IP-jitter is relatively small after 0.02 s of GM

Model A:

- Without any correction: mean L/L_0 train=99.88%
- With IP-FB: mean L/L_{0 train}=99.97% std reduced by a factor 2 *Philip Burrows* 117

Model B:

• Without any correction: mean L/L_0 train=91.1%

• With IP-FB: mean L/L₀ train=97.86% std reduced by a factor 4 PSI seminar 27/2/12

CLIC luminosity result with IP FB

In these cases significant luminosity degradation

Model C:

• Without any correction: mean L/L_0 train=30.52% & High standard deviation!

• With IP-FB: mean
$$L/L_0$$
 train=64.15% std reduced by a factor 2 118

Model K:

• Without any correction: mean L/L_0 train=32.53% & High standard deviation!

• With IP-FB: mean L/L_{0 train}=67.82% std reduced by a factor *aminar* 27/2/12

Luminosity results summary

Simulate effect of IP feedback and slow orbit FB in BDS

ILC IP intra-train FB performance

Philip Burrows

Bunch #

Other CLIC possibilities

Fast amplifier prototype for drive beam phase instability feed-forward system:

10 deg capture range → 0.2 deg phase stability +-375urad max. beam deflection very serious thought and R&D needed prototyping and tests at CTF3?

FONT3: Results (June 2005) 40 pulses per position setting

Example: BPM calibrations

Philip Burrows

Example: kicker calibration

CLIC: zoom-in to QD0

Herve 22/2/10

PSI seminar 27/2/12

Philip Burrows 4 Dec. 2009 ^{8th MDI meeting}

125 H.Gerwig

CLIC: zoom-in to QD0

Herve 22/2/10

PSI seminar 27/2/12

Philip Burrows 4 Dec. 2009 ^{8th MDI meeting}

126 H.Gerwig

0.4 micron jitter propagation from P2

Philip Burrows

Jitter comparison at IP

Assuming perfect lattice, no further imperfections (!)

FB simulation: P2-K1+P3-K2 coupled

Bunch 1

Philip Burrows