

SUPER-FRS TRACKING of HEAVY IONS at FAIR with a TWIN GEM-TPC

F. García

Detector Laboratory - Helsinki Institute of Physics - University of Helsinki - Finland

OUTLINE

1. Introduction and Motivation

2.Research & Development Phase

3. Consolidation of the Final Prototype

4.Conclusions

SUPER-FRS TRACKING of HEAVY IONS with a TWIN GEM-TPC

INTRODUCTION & MOTIVATION

Projectile: Elements p - U Energy up to 1.5 GeV/u Intensity up to 10¹² /spill

@DMU-GSI, @FSB-FAIR

THE PROJECT TIMELINE

The R&D and Design can be finalized by:

Q3/2022

Mass production:

Q1/2023 - Q4/2024

Part of the Finnish Contribution will be in Diagnostic systems, which is a work package dedicated to provide 36 GEM-TPC detectors.

NUCLEAR INSTRUMENTS & METHODS IN PHYSICS

RESEARCH

RESEARCH & DEVELOPMENT PHASE

Nuclear Inst. and Methods in Physics Research, A 884 (2018) 18-24

Nuclear Inst. and Methods in Physics Research, A

journal homepage: www.elsevier.com/locate/nima

A GEM-TPC in twin configuration for the Super-FRS tracking of heavy ions

Projectile (Energy)		Energy deposited, MeV		
G	EM-TPC	(in 2.5 cm of P10 gas at 1 atm)		
	(Half)		RMS	
Protons	1 st	36.7 10-3	3.3 10-3	
(50 MeV)	2^{nd}	37.4 10-3	3.1 10-3	
$^{12}\mathrm{C}$	1^{st}	240.2 10-3	38.7 10-3	
(660 MeV/u)	2^{nd}	241.4 10-3	39.2 10 ⁻³	
¹²⁴ Xe	1 st	20.1	343.3 10-3	
(660 MeV/u)	2^{nd}	20.2	349.6 10-3	
²³⁸ U	1 st	82.6	6.0	
(300 MeV/u)	2 nd	84.0	6.1	

Summary:

- The GEM-TPC concept was tested and performing very stable with good spatial resolution at close to 100% tracking efficiency
- Test beams with Primary projectiles of:
 - Protons at 50 MeV
 - Ni at 550 MeV/u
 - Au at 750 MeV/u
 - U at 330 MeV/u and 300 MeV/u
 - C at 660 MeV/u
 - Xe at 660 MeV/u
 - Fragments

Courtesy of A. Prochazka

Efficiency Plots simulations for the GEM-TPC equipped with Delayed lines and with GEMEX readout for the case of P10 and a faster gas. The twin GEM-TPC using a 1.6 μ s time window and a 21 ns check sum can reach 1.75 MHz

Educated guess:

From Physics; the run with the largest Dynamic range requires:

The Sensitivty from: Ni: 56 fC up to U: 614 fC (in ArCH₄, Gain=1 and 3 cm thick gas)

 $U \rightarrow 614 \text{ fC} \rightarrow 122 \text{ fC/strip} [cluster:10 strips] (20\%) \rightarrow 153 \text{ fC} (25\%)$

Ni \rightarrow 56 fC \rightarrow 11.2 fC/strip [cluster:10 strips] (20%) \rightarrow 14.3 fC (25%)

In order to have some gain to steer the space chage/avalanche

A Gain of the order of = 10 is desired, which arrives to 1.5 pC/strip

The Super-FRS GEM-TPC prototype development TECHNICAL REPORT

F.Garcia¹, C.Caesar², T.Grahn^{3,1}, A.Prochazka², and B.Voss²

¹Helsinki Institute of Physics, University of Helsinki, 00014 Helsinki, Finland
²GSI Helmholtzzentrum für Schwerionenforschung, Darmstadt 64291, Germany
³University of Jyvaskyla, Department of Physics, FI-40014 University of Jyvaskyla, Finland

June 1, 2015

Contents

1	FAIR Super-FRS tracking detector concept						
	1.1	Super-FRS	5				
	1.2	Tracking system Overview	6				
	1.3	Parameter requirements	7				
	1.4	The GEM-TPC detector	12				

However, there are questions to be answered:

- □ Is the drift field uniform inside the two field cages which are in opposite directions (twin configuration)?
- □ Is the P10 ArCH₄ (90/10%) gas mixture a solution for Super-FRS?
- Can we integrate the VMM3a/SRS into MBS?

- □ Until now the gas mixture used has been P10 ArCH₄ (90/10%) → Which has a severe aging problems at high rate
- □ Next gas mixture will be: $ArCO_2$ 70/30% \rightarrow for Testing whole system and Characterization
- **D** Possible choice can be: $ArCO_2CF_4$ (45/15/40%)

Gas mixture	Drift Field, V/cm	Drift Velocity, cm/µs	D _L , µm/ √D(cm)	D _⊤ , µm/ √D(cm)	Drift Time, µs
P10	320	4.2	257.2	603.8	2
ArCO ₂ (70/30)	600	1.5	150.1	134.0	6.6
ArCO ₂ CF ₄ (45/15/40)	600	2.5	117.3	118.9	4

Rate-capability of the VMM3a Front End in the RD51 Scalable Readout System

D. Pfeiffer^{a,b,c,*}, L. Scharenberg^{b,d,*}, P. Schwäbig^{d,*}, S. Alcock^a, F. Brunbauer^b, M. J. Christensen^e, K. Desch^d, K. Flöthner^{b,f}, F. Garcia^g, R. Hall-Wilton^{a,c}, M. Hracek^{b,h}, G. Iakovidisⁱ, D. Janssens^{b,j}, J. Kaminski^d, M. Lupberger^{d,f}, H. Muller^{b,d}, E. Oliveri^b, L. Ropelewski^b, A. Rusu^k, J. Samarati^{a,b}, M. van Stenis^b, A. Utrobicic^b, R. Veenhof^{b,l}

^aEuropean Spallation Source ERIC (ESS), Box 176, SE-221 00 Lund, Sweden ^bEuropean Organization for Nuclear Research (CERN), 1211 Geneva 23, Switzerland ^c University of Milano-Bicocca, Department of Physics, Piazza della Scienza 3, 20126 Milan. Italy

^dPhysikalisches Institut, University of Bonn, Nußallee 12, 53115 Bonn, Germany ^eEuropean Spallation Source ERIC (ESS), Data Management and Software Centre, Ole Maaløes Vej 3, 2200 Copenhagen, Denmark ^fHelmholtz-Institut für Strahlen- und Kernphysik, University of Bonn, Nußallee 14–16, 53115 Bonn. Germany ⁹Helsinki Institute of Physics, P.O. Box 64, FI-00014 University of Helsinki, Finland

L. Scharenberg @ INSTR20

VMM3a Specifications

- 64 channels
- Developed by BNL for ATLAS New Small Wheel Upgrade
- High rate capability → about 4 MHz/channel
- Self triggered, continuous read-out
- Integrated zero suppression
- 10-bit charge information
- 12+8-bit time information → O(ns) time resolution
- **Neighbouring logic**

28 Feb 2020

2019 05 06 Jakovidis VMM.pd

(below globtop)

Cortesy of: H. Müller, L. Scharenberg, and D. Pfeiffer et al.

VMM hybrid (V4.0 2020)

analogue signals VMM1

1/6/201

8 cm

Francisco García - RD51 Collaboration Meeting and Topical Workshop on Wide Dynamic Range Operation

S

cm

SUPER-FRS TRACKING of HEAVY IONS with a TWIN GEM-TPC

CONSOLIDATION of the FINAL PROTOTYPE

JYVÄSKYLÄN YLIOPISTO

CONCLUSIONS

- □ The concept of a GEM based TPC in Twin configuration, at the Super-FRS for particle tracking has reach its final stage
- The TDR shows that the physics program of the Super-FRS in terms of tracking can be well covered by the detector developed during this R&D phase
- In publications have been reported results of the spatial resolution lower than 1 mm (125 μm 700 μm) and tracking efficiency of close to 100% has been achieved for all projectiles tested for moderate rates
- Several groups at GSI started to work in the integration of the VMM3a/SRS to the existing local DAQs, which open an opportunity for synergies in our Finnish in-kind contribution

JOURNEY ACROSS THE GEM-TPC DEVELOPMENT

TO SUMMARIZE:

- First meeting at Eurorib'08 with H. Simon
- Meeting at HIP and GSI in Oct. 08 and Feb. 09
- Creation of Consortium: Comenius Univ. and Univ. of Helsinki Feb 09
- First visit to Bratislava, March. 09
- Design of GEM stack at HIP, April 09
- Production of GEM foils at CERN by R. Oliveira, Nov. 09
- Successful Tests of the First GEM stack, Dec. 09
- Integration of the HB1, GEM-TPC, Feb. 10
- First Test Beam at GSI with HB1, GEM-TPC, Aug. 10
- Meeting at HIP and NUSTAR meeting at GSI in Jan. 11 and Feb. 11
- Concept of GEM-TPC for SuperFRS presented to RD51, Apr, 11
- First discussions about twin TPC by B. Sitar, June 11
- NUSTAR meeting in Bucharest, Oct. 11
- The twin GEM-TPC design starts by R. Janik, Jan. 12
- NUSTAR meeting at GSI, Feb. 12
- Integration of GEMEX into HB2 and HB3, GEM-TPC, Apr. 12
- Beam Test at GSI with HB2 and HB3, May. 12

- The Spatial resolution requirements fulfilled
- The Rate capability increased, but yet no as required

PROTOTYPE DEVELOPMENTS

Flange of the GEM-TPC HB1, read out by delayed lines

Right: The electrodes of the board with strips of 200 μ m width and 500 μ m pitch

And 8 Header Panasonic connectors with 130 Pin each

JYVÄSKYLÄN YLIOPISTO

First GEM-TPC called HB1 detector (Helsinki Bratislava prototype 1)

JOURNEY ACROSS THE GEM-TPC DEVELOPMENT

GEM-TPC test in lab at Comenius University

FIRST GEM-TPC PROTOTYPE HB1 - TEST (cont.)

PROTOTYPE DEVELOPMENTS (cont.)

GEM-TPC Results for a Test Beam @GSI with ⁶⁴Ni ions at 550 MeV/u

The GEM-TPC shows that the resolution in Y (Drift) reaches value around 130 µm and on X between 130 to 300µm

HB3 with four GEMEX cards

GEMEX cards provide by EE - GSI

JYVÄSKYLÄN YLIOPISTO

JOURNEY ACROSS THE GEM-TPC DEVELOPMENT

JOURNEY ACROSS THE GEM-TPC DEVELOPMENT

The nonlinearity for the HB2 and HB3 for the run 150. Variations are due to the fact that the baseline fluctuations were not monitored during the data taken.

JYVÄSKYLÄN YLIOPISTO

The position resolution in X coordinate for the HB2 (200 μm) and HB3 (300 μm) for most of the runs.

18.11.21

SUPER-FRS TRACKING of HEAVY IONS with a TWIN GEM-TPC

The HGB4 - Twin GEM-TPC Prototype

SUPER-FRS TRACKING of HEAVY IONS with a TWIN GEM-TPC

IGB4 CONTROL SUM

TEST BEAM - GEANT4 SIMULATIONS

Edep in HGB4_1_1 No Coin.

Edep in HGB4_1_2 No Coin.

JYVÄSKYLÄN YLIOPISTO

Edep in HGB4_1_1 No Coin.

Xenon

Edep in HGB4_1_2 No Coin.

Carbon

Educated guess:

From Simulations:

From Oscilloscope:

 $\Delta E \approx 20 \text{ KeV}$ (Landau distr.) $\Delta V = 40 \text{ mV} \rightarrow 20 \text{ fC}$

 $N_{e-i pair} = 678 e-$ 20 fC = 125000 e-

From Electronics:

Gain_{eff} = 184 (per GEM-TPC)

G = 2 mV/fC $\tau_{rise} = 120 \text{ ns}$

BACKUP SLIDES

BACKUP SLIDES

