

Multi-physics considerations of NI HTS Solenoid

for PSI Positron Production Experiment

J. Kosse, B. Auchmann, M. Duda, T. Michlmayr, H. Garcia Rodrigues Bad Zurzach, HTS Modelling Workshop 2024

This work was performed under the auspices of and with support from the Swiss Accelerator Research and Technology (CHART) program

Contents

- Motivation
- PSI positron production experiment
- EM/thermal design
- Mechanical design
- Conclusion

FCC-ee: electron-positron collider

"A 100 km tunnel hosting a circular electron-positron collider as a first stage towards a 100 TeV proton-proton collider would probe new phenomena coupled to the Higgs and electroweak sectors with unparalleled precision." [1]

3

FCC-ee injector

"portions of the same linac are used for multiple purposes" [2]

6 GeV e^- available as a precursor for e^+ beam

Paul Scherrer Institute PSI

4

[2] P. Craievich, https://www.psi.ch/en/gfa/fcc-ee-injector-design-and-psi-positron-source-pss-project

Yield=
$$\frac{N_{e^+}}{N_{e^-}} = 7 [3]$$

[3] N. Vallis https://doi.org/10.18429/JACoW-LINAC2022-TUPORI16

5

FCC-ee injector

numeric and analytical optimization

- Y Zhao. Optimisation of the FCC-ee Positron Source Using a HTS Solenoid Matching Device, 2022.
- Y Zhao. Comparison of Different Matching Device Field Profiles for the FCC-ee Positron Source, 2021.
- *R. Chehab et al., "An adiabatic matching device for the Orsay linear positron accelerator", IEEE Trans. Nucl. Sci., 1983.*

Paul Scherrer Institute PSI

PSI Positron Production (P³) Experiment @ SwissFEL

Aims to demonstrate high yield positron source in 2026

PSI

Swiss Accelerato Research and Technology

PSI Positron Production (P³) Experiment

Aims to demonstrate high yield positron source

Paul Scherrer Institute PSI

8

N. Vallis, https://doi.org/10.1103/PhysRevAccelBeams.27.013401

Solder-potted NI HTS: an attractive option

🌔 PSI

- DC application
- Loose magnetic field quality requirement
- No risk of insulation radiation damage
- Mechanically strong
- Good thermal conductivity
- Compact

Upscaled version of 18 T PSI NI solenoid

Experimental results of 18 T stack used as P^3 simulation input

Current injection method & parts of soldering technology via licensing agreement with

PSI 18 T solenoid

Radiation

P³ will demonstrate high yield, but not radiation robustness

P3 (unshielded)	FCC-ee (2 cm Tungsten)
18 kGy/year	23 MGy/year
10^{-8} DPA/year	$2\cdot 10^{-4}$ DPA/year

B. Humann, doi:10.18429/JACoW-IPAC2022-THPOTK048

Conduction-cooled system 15 T bore, 20 T conductor @ 1.2 kA, 15 K

Electromagnet/thermal simulation

2D axisymmetric *H*-formulation,

- homogenized winding pack,
- Anisotropic resistivity matrix with off-diagonal terms to account for the spiral nature of the coils [5]

+2D thermal

+ thermal network

[5] R Mateira, DOI 10.1088/1361-6668/ab9688

$$oldsymbol{
ho}_{ ext{coil}} = goldsymbol{
ho}'g^{-1} = egin{bmatrix}
ho_{ ext{rr}} &
ho_{ ext{r}\phi} & 0 \
ho_{\phi r} &
ho_{\phi \phi} & 0 \ 0 & 0 &
ho_{ ext{z}} \end{bmatrix}_{\hat{r},\hat{\phi},\hat{z}}$$

Experiment vs model

💙 PSI

Turn-turn resistance used a fitting parameter

 $ho_{turnturn} \propto
ho_{copper RR20}(B,T)$ Works reasonably over a 15-77 K range

Example: 1.8 kA at 15 K in cryogen-free setup

P3 simulation geometry

Magnet charging

Obtainable field strongly depends on thermal aspects

17 T reachable*, but magnet at risk of quenching during failure

[5] R Mateira, DOI 10.1088/1361-6668/ab9688

*Not considering mechanical

17

Fault scenario:

Coolers stop Cryocooler Current leads Solenoid stack Pb mass 1.07 m 0

Open circuit

Stored energy gets dissipated in coils+buffers

Mechanical

Tape structure explicitly modeled to capture -differential thermal contraction -plasticity

Max	radial stress	2	MPa
Min	axial stress	-150	MPa
Max	hoop stress (substrate)	373	MPa

Conclusions

- P³ experiment aims to demonstrate high yield positron source
- Positron source ideal application for NI HTS
- P³ experiment will feature a NI HTS solenoid, 15 T bore, at 15 K, 1.2 kA, conduction-cooled in cryogen-free cryostat
- Extra thermal mass can help prevent quenches in case of external faults
- Magnet under construction, scheduled for test in 2024

