

A frequency-domain finite element model for simulating HTS

J-A and T-A formulations

G. dos Santos^(1,2) <gabriel.santos@eng.uerj.br> F. Trillaud^(3,4) <ftrillaudp@ii.unam.mx>

- (1): Department of Electrical Engineering, Rio de Janeiro State University, Brazil
- (2): Department of Electrical Engineering, Federal University of Rio de Janeiro, Brazil
- (3): Instituto de Ingeniería, UNAM, CDMX, Mexico
- (4): GREEN, Université de Lorraine, Nancy, France

Context

Need for a quick method to compute parameters in steady-state for AC regime

AC losses

Electrical parameters

What for?

A quick estimate for pre-design (cooling system for instance)

A first step before initiating a transient analysis (for electrical machines for instance)

Maxwell equations in frequency domain

Two newest formulations of the Maxwell equation:

T-A formulation (time)
$$ightarrow$$
 $\hat{\mathbf{T}} - \hat{\mathbf{A}}$ phasor formulation

J-A formulation (time)
$$ightarrow$$
 $\hat{\mathbf{J}} - \hat{\mathbf{A}}$ phasor formulation

$$\hat{\mathbf{X}} = \mathbf{X}_{max} \exp(j\omega t)$$

$$\omega = 2\pi f$$

$$i^2 = -1$$

Frequency-domain equations for tape-based model (thin strip):

$$\nabla \times \frac{1}{\mu} \nabla \times \hat{\mathbf{A}} - j\omega\sigma \hat{\mathbf{A}} = \hat{\mathbf{J}}_{e}$$

$$\nabla \times \rho_{sc,rms} \nabla \times \hat{\mathbf{T}} = -j\omega\hat{\mathbf{B}}$$

$$\hat{\mathbf{B}} = \nabla \times \hat{\mathbf{A}}$$

$$\hat{\mathbf{J}}_{sc} = \nabla \times \hat{\mathbf{T}}$$

$$T_{1} - T_{2} = \frac{I_{max} \cos(\omega t)}{\delta}$$

$$\int_{w_{sc}} \hat{\mathbf{J}}_{sc} \cdot d\mathbf{l} = \frac{\hat{i}}{\delta}$$

Tape-based or full model

Each individual tape is simulated given the proper current is impressed as

A Dirichlet boundary condition for the ${\bf T}$ formulation ${\bf T}_1 - T_2 = {I \over \delta} \cos(\omega t)$

A point-wise constraint in the \mathbf{J} formulation $\mathbf{\hat{J}}_{sc} \cdot d\mathbf{l} = \hat{\mathbf{i}}_{\delta}$

In both formulation, the magnetic vector potential is solved assuming a discontinuity of the magnetic field across the 1D line representing the tape: τ

$$\mathbf{n}_{1,2} \times \left(\frac{1}{\mu} \nabla \times \hat{\mathbf{A}}_2 - \frac{1}{\mu} \nabla \times \hat{\mathbf{A}}_1\right) = \delta \hat{\mathbf{J}}_{sc} \qquad \boxed{1} \quad \mathbb{S} \qquad \boxed{1}$$

RMS electrical resistivity

Assuming a cosinusoidal current, the superconductor resistivity is,

$$\rho_{sc} = \frac{E_c}{J_c^n} |J_{max}\cos(\omega t)|^{n-1}$$

Development in Fourier series and applying the Parseval relation, one can demonstrate that the RMS resistivity can be written as,

$$\rho_{sc,rms} = \frac{E_c}{J_c} \left(\frac{J_{max}}{J_c}\right)^{n-1} \zeta(n)$$

Where the RMS factor ξ has been fitted to be easily implemented in COMSOL

$$J_{c0} = \frac{I_{c0}}{A_{sc}}$$

$$J_{c}(\mathbf{B}) = \frac{J_{c0}}{\left(1 + \frac{\sqrt{k^{2}B_{\parallel}^{2} + B_{\perp}^{2}}}{B_{0}}\right)^{\alpha}}$$

$$k = 0.0605$$
, $\alpha = 0.7580$, $B_0 = 0.103$ T

Two case studies

Single tape:

BSCCO

REBCO (1 μm thick)

	Data	<i>I</i> _c [A]	n
BSCCO	ACT-AC Sumitomo	68	11
REBCO	Superpower	300	30
REBCO (CORC®)	-	235	33

CORC® cable:

REBCO (1 µm thick)

Operating temperature: 77 K

Frequency range: 40 - 1,000 Hz

<i>r</i> _i (mm)	$r_{\rm o}$ (mm)	$r_{\rm sc}$ (mm)
2.65	3.15	3.25

Single tape: BSCCO

<u>Data sources</u>: S. Fawaz. Etudes numériques et expérimentales des bobines supraconductrices HTC pour des applications en énergie électrique. PHD thesis, IAEM: Informatique - Automatique - Electronique - Electrotechnique - Mathématiques, Université de Lorraine, France, 2023.

Form.	Freq. (Hz)	R^2	er_{max}/er_{min} (%)	Comp. time (s)
$\mathbf{\hat{J}} - \mathbf{\hat{A}}$	40	0.976193	$17.1 \ / \ 4.5$	20
	60	0.991507	$14.5 \ / \ 0.9$	26
	80	0.963282	18.3 / 1.4	13
$\mathbf{\hat{T}} - \mathbf{\hat{A}}$	40	0.976271	$19.4\ /\ 0.5$	20
	60	0.941172	$21.6 \ / \ 7.1$	26
	80	0.952471	22.9 / 2.5	22
$\mathbf{J} - \mathbf{A}$	40	0.889592	32 / 11.4	65
	60	0.939473	$25 \ / \ 7.9$	60
	80	0.966140	$19.7 \ / \ 2.3$	62
$\mathbf{T} - \mathbf{A}$	40	0.890569	$28.6 \ / \ 11.1$	66
	60	0.990484	16 / 5	65
	80	0.967893	17 / 1.4	63

Single tape: REBCO

Data sources: B. Shen ert al. Investigation and comparison of AC losses on stabilizer-free and copper stabilizer HTS tapes. Physica C: Superconductivity and its Applications, 541:40–44, 2017.

Form.	Freq. (Hz)	R^2	er_{max}/er_{min} (%)	Comp. time (s)
$\hat{\mathbf{J}}$ - $\hat{\mathbf{A}}$	10	0.961789	18.9 / 7.3	134
	100	0.947192	$21.7 \ / \ 6.5$	135
	1000	0.819709	33.9/21.4	137
$\hat{\mathbf{T}}$ - $\hat{\mathbf{A}}$	10	0.960085	18.6 / 6.7	343
	100	0.949447	$21.7 \ / \ 15.8$	344
	1000	0.827167	33.3/22.6	345
J-A	10	0.976600	15.3 / 2.7	500
	100	0.782412	$42.5 \ / \ 23.5$	501
	1000	0.622033	$71.5 \ / \ 35.6$	502
\mathbf{T} - \mathbf{A}	10	0.985943	$34.1 \ / \ 1.7$	605
	100	0.762807	$39.3 \ / \ 22.7$	607
	1000	0.584765	48.5 / 44.5	609

CORC®-type cable

Data sources: J. Yang, et al. Numerical Study on AC Loss Characteristics of Conductor on Round Core Cables Under Transport Current and Magnetic Field. IEEE Transactions on Applied Superconductivity, 31(8):1–4, 2021.

Form.	Freq. (Hz)	\mathbb{R}^2	er_{max}/er_{min} (%)	Comp. time (s)
$\bf \hat{J}\text{-}\hat{A}$	36	0.982973	$22.7 \ / \ 6.6$	120
	72	0.990254	$17.5 \ / \ 5.6$	123
	144	0.992968	19.3 / 1.6	121
$\mathbf{\hat{T}}\text{-}\mathbf{\hat{A}}$	36	0.978617	22.7 / 8.2	125
	72	0.987299	17.7 / 7	127
	144	0.993072	19.5 / 1.5	123
J-A	36	0.978617	22.7 / 8.2	1544
	72	0.987299	17.4/17.5	1542
	144	0.993072	19.3/1.5	1544
T-A	36	0.965897	$16.2 \ / \ 7.9$	2874
	72	0.992168	10.7/3.9	2876
	144	0.987674	12.9/4.2	2871

Discussion

Single tape:

Very good agreement for BSCCO and CORC®

Discrepancy measurements and numerical results for on single REBCO tape. The max. error is still reasonable for most of the runs <50%

No clear explanation at the moment on this discrepancy: non-magnetic material, and negligible impact of metallic layers

Non-magnetic material → guaranteed by manufacturer

Metallic layers → additional model including the metallic layers not presented here

Cable:

Losses dominated by the Cu former

Same issue as single REBCO tape

Conclusion

Proposal for a frequency model to get steady-state electromagnetic parameters

Validation via the AC losses against experimental data

For REBCO, the results are fair but systematically underestimate the losses on a single tape \rightarrow is the substrate not slightly magnetic after all?

The model can be used to predict steady-state conditions or to provide initialization values for a later transient analysis → very useful for superconducting components of the power grid, electrical machines, cables and fault-current limiters amongst other devices.