

A frequency-domain finite element model for simulating HTS

J-**A** and **T**-**A** formulations

G. dos Santos^{$(1,3)$} <gabriel.santos@eng.uerj.br> F. Trillaud^(2,4) \leq <u>ftrillaudp(@gmail.com</u> >

(1): Department of Electrical Engineering, Rio de Janeiro State University, Brazil

(2): Instituto de Ingeniería, UNAM, Mexico

(3): Department of Electrical Engineering, Federal University of Rio de Janeiro, Brazil

Context

Need for a quick method to compute parameters in steady-state for AC regime

AC losses

Electrical parameters

What for?

A quick estimate for pre-design (cooling system for instance)

A first step before initiating a transient analysis (for electrical machines for instance)

Maxwell equations in frequency domain

 $\mathbf{\hat{X}} = \mathbf{X}_a \exp(j\omega t)$

 $\omega = 2\pi f$
 $j^2 = -1$

Two newest formulations of the Maxwell equation:

T-A formulation (time) $\rightarrow \hat{\mathbf{T}} - \hat{\mathbf{A}}$ phasor formulation **J-A** formulation (time) $\rightarrow \hat{\mathbf{J}} - \hat{\mathbf{A}}$ phasor formulation

Frequency-domain equations for tape-based model (thin strip): $\nabla \times \frac{1}{\gamma} \nabla \times \mathbf{\hat{A}} - j \omega \sigma \mathbf{\hat{A}} = \mathbf{\hat{J}}_e$ $\rho_{sc} \hat{\mathbf{J}}_{sc} = -j\omega \hat{\mathbf{A}}$ $\nabla \times \rho_{sc,rms} \nabla \times \mathbf{\hat{T}} = -j\omega \mathbf{\hat{B}}$ $\mathbf{\hat{B}} = \nabla \times \mathbf{\hat{A}}$ $\int_{w_{\infty}} \hat{\mathbf{J}}_{sc} \cdot d\mathbf{l} = \frac{i}{\delta}$ $\mathbf{\hat{J}}_{sc}=\nabla\times\mathbf{\hat{T}}$ $T_1-T_2=\frac{|i|\cos(\omega t))}{s}$ 3 IINGEN-UNAM and UERJ 2008/2024

Tape-based or full model

Each individual tape is simulated given the proper current is impressed as

A Dirichlet boundary condition for the T formulation $T_1 - T_2 = \frac{1}{\delta} \cos(\omega t)$ \int_{∞} $\hat{\mathbf{J}}_{sc} \cdot d\mathbf{l} = \frac{\hat{\mathbf{i}}}{\delta}$ A point-wise constraint in the J formulation

In both formulation, the magnetic vector potential is solved assuming a discontinuity of the magnetic field across the 1D line representing the tape: \overline{I}_1

$$
\mathbf{n}_{1,2} \times \left(\frac{1}{\mu} \nabla \times \mathbf{\hat{A}}_2 - \frac{1}{\mu} \nabla \times \mathbf{\hat{A}}_1\right) = \delta \mathbf{\hat{J}}_{sc} \quad \text{(1)} \quad \underset{\mathbf{\hat{s}}}{\overset{\omega}{\mathbf{\hat{s}}}} \left| \underset{\mathbf{n}_{1,2}}{\overset{\omega}{\mathbf{\hat{s}}}} \right| \quad \text{(2)}
$$

4 IINGEN-UNAM and UERJ 06/06/2024

 T_{2}

RMS electrical resistivity

Assuming a cosinusoidal current, the superconductor resistivity is,

$$
\rho_{sc}=\frac{E_c}{J_c^n}\big|J_{max}\cos(\omega t)\big|^{n-1}
$$

Development in Fourier series and applying the Parseval relation, one can demonstrate that the RMS resistivity can be written as,

$$
\rho_{sc,rms} = \frac{E_c}{J_c} \left(\frac{J_{max}}{J_c}\right)^{n-1} \zeta(n)
$$

Where the RMS factor ζ has been fitted to be easily implemented in COMSOL $k = 0.0605$, $a = 0.7580$,

$$
E_{2}(\mathbf{B}) = \frac{J_{c0}}{\left(1 + \frac{\sqrt{k^{2}B_{\parallel}^{2} + B_{\perp}^{2}}}{B_{0}}\right)^{\alpha}}
$$

 $B_0 = 0.103$ T

5 IINGEN-UNAM and UERJ 06/06/2024

Two case studies

Single tape: **BSCCO** REBCO (1 µm thick)

CORC® cable: REBCO (1 µm thick)

Operating temperature: 77 K Frequency range: 40 – 1000 Hz

Single tape: BSCCO

Data sources: S. Fawaz. Etudes numériques et expérimentales des bobines supraconductrices HTC pour des applications en énergie électrique. PHD thesis, IAEM: Informatique - Automatique - Electronique - Electrotechnique - Mathématiques, Université de Lorraine, France, 2023.

Single tape: REBCO

Data sources: B. Shen ert al. Investigation and comparison of AC losses on stabilizer-free and copper stabilizer HTS tapes. Physica C: Superconductivity and its Applications, 541:40–44, 2017.

8 IINGEN-UNAM and UERJ 2008/06/2024

CORC® -type cable

Data sources: J. Yang, et al. Numerical Study on AC Loss Characteristics of Conductor on Round Core Cables Under Transport Current and Magnetic Field. IEEE Transactions on Applied Superconductivity, 31(8):1–4, 2021.

Discussion

Single tape:

Very good agreement for BSCCO

Discrepancy measurements and numerical results for REBCO (no thorough analysis in the literature however this difference seems to be expected!)

No clear explanation at the moment on this discrepancy: non-magnetic material, and negligible impact of metallic layers

Non-magnetic material \rightarrow guaranteed by manufacturer

Metallic layers \rightarrow additional model including the metallic layers not presented here

Cable:

Losses dominated by the Cu former

Very good agreement for CORC

Conclusion

- Proposal for a frequency model to get steady-state electromagnetic parameters
- Validation via the AC losses against experimental data
- For REBCO, the results are fair but systematically underestimate the $losses \rightarrow is$ the substrate not slightly magnetic after all?

The model can be used to predict steady-state conditions or to provide initialization values for a later transient analysis \rightarrow very useful for superconducting components of the power grid, electrical machines, cables and fault-current limiters amongst other devices.

Acknowledgments

The authors would like to thank:

- the Coordenação de Aperfeiçoamento de Pessoal de Nível Superior - Brasil (CAPES) - Finance Code 00, CNPq, CNPq/INCT-Inerge, and FAPERJ
- the Dirección General de Asuntos del Personal Académico (DGAPA) of the Universidad Nacional Autónoma de México (UNAM) under Grant DGAPA-PAPIIT 2024 (\#IN104124)
- the Mexican federal fund, Ciencia básica y de frontera 2023-2024 of the Consejo Nacional de Humanidades, Ciencias y Tecnologías (CONAHCYT) under the grant CBF2023-2024-2288