

Introduction of the magnetic scalar potential in the T-A and J-A formulations for efficient electromagnetic simulations of High-Temperature Superconductors

Authors: Gabriel dos Santos, Bárbara M. O. Santos, Frederic Trillaud, Gabriel Hajiri, Kevin Berger,

Speaker: Gabriel dos Santos

Content

Introduction Methodology Case studies Results Conclusion Content

Introduction

When superconducting devices are modeled, it is so common we have:

As presented in $\mathbf{H} - \phi$ formulation: For Non-conducting region: $\nabla \times \mathbf{H} = 0 \Rightarrow -\nabla \phi = \mathbf{H}$, reducing the DoFs and saving the computation time in the problem.

Introduction

Motivation:

Are there other possibilities to reduce still more the DoFs?

Literature shows that the T - A formulation presents faster computation than H formulation and has accurate results.

More recently, the J - A has presented computation time faster than T - A with a high accuracy.

We propose introducing the ϕ in the T - A and in J - A formulation.

 $\mathbf{T} - \mathbf{A} - \phi$ formulation (thin-shell approximation)

Couplings between the formulations:

T – **A** coupling: **T** computes the **J** in Γ_t and sends (as laminar current) to **A**. $\mathbf{n} \times (\mathbf{H}^+ - \mathbf{H}^-) = -(\nabla \times (T\mathbf{n})) \cdot t_{sc}$ **A** computes the **B** in Ω_{sc} and sends (as source) to **T**. $\mathbf{B} = \nabla \times \mathbf{A}$

 $\begin{array}{l} \mathbf{A} - \phi \text{ coupling:} \\ \mathbf{A} \text{ computes the } \mathbf{B} \text{ on } \partial \Omega_{sc} \text{ and sends (as BC) to } \phi. \\ \mathbf{n} \cdot \mathbf{B} = \mathbf{n} \cdot (\nabla \times \mathbf{A}) \\ \phi \text{ computes the } \mathbf{B} \text{ on } \partial \Omega_{sc} \text{ and sends (as BC) to } \mathbf{A}. \\ \mathbf{n} \times \mathbf{H} = \mathbf{n} \times (-\nabla \phi) \end{array}$

4/18

 $\mathbf{T} - \mathbf{A} - \phi$ formulation (thin-shell approximation – transport current problem)

 $\ln \Omega_{\rm sc}: \nabla \times (\nu \nabla \times \mathbf{A}) = \mathbf{J}$

In
$$\Gamma_t$$
: $\nabla \times (\rho \nabla \times (T\mathbf{n})) = -\partial_t (\mathbf{B}, \mathbf{n})$

 $\ln \Omega_{nc}: \nabla(-\nabla \phi) = 0$

Imposition of the current:

As presented in $H - \phi$, if Ω_{sc} has non-zero net current, a **discontinuity (cut) is needed** to impose the current inside the superconducting domain.

Using the magnetic scalar potential discontinuity,

$$\phi^+ - \phi^- = \phi^\pm = NI(t)$$

Magnetic scalar potential on $\partial \Omega_{nc}$

$$\phi = 0$$

The average of the ϕ on Γ_d **must be** imposed in the **T** based on the BDC.

 $T_1 = 0$

$$T_2 = \frac{\overline{\phi^{\pm}}}{t_{sc}}$$

5/18

 $J - A - \phi$ formulation (thin-shell approximation)

Couplings between the formulations:

J – A coupling:

J computes the current in Γ_t and sends (as laminar current) to A.

 $\mathbf{n} \times (\mathbf{H}^+ - \mathbf{H}^-) = -\mathbf{J}.\,t_{sc}$

A computes magnetic vector potential in Ω_{sc} and sends (as source) to J.

 $\begin{array}{l} \mathbf{A} - \phi \text{ coupling:} \\ \mathbf{A} \text{ computes the } \mathbf{B} \text{ on } \partial \Omega_{\mathrm{sc}} \text{ and sends (as BC) to } \phi. \\ \mathbf{n} \cdot \mathbf{B} = \mathbf{n} \cdot (\nabla \times \mathbf{A}) \\ \phi \text{ computes the } \mathbf{B} \text{ on } \partial \Omega_{\mathrm{sc}} \text{ and sends (as BC) to } \mathbf{A}. \\ \mathbf{n} \times \mathbf{H} = \mathbf{n} \times (-\nabla \phi) \end{array}$

 $J - A - \phi$ formulation (thin-shell approximation – transport current problem)

Imposition of the current:

 $\phi^+ - \phi^- = \phi^{\pm} = NI(t)$ Magnetic scalar potential on $\partial \Omega_{nc}$ $\phi = 0$ The average of the ϕ on Γ can be imposed in

The average of the ϕ on Γ_d can be imposed in the J based on a constrain.

$$\int_{\Gamma_t} \mathbf{J} \cdot t_{sc} \, d\Gamma \pm \overline{\phi^{\pm}} = 0$$

In Ω_{sc} : $\nabla \times (\nu \nabla \times \mathbf{A}) = \mathbf{J}$

In
$$\Gamma_t: \rho \mathbf{J} = -\partial_t \mathbf{A}$$

 $\ln \Omega_{nc}: \nabla(-\nabla \phi) = 0$

Two models were used to test the formulations:

- REBCO tape carrying current
- CORC cable with 3 tapes carrying current

Implementation was done in COMSOL using three modules: Magnetic Field (mf) \rightarrow A formulation Coefficient Form Boundary PDE (cb) \rightarrow T formulation (only in T – A – ϕ) Boundary ODE & DAE (bode) \rightarrow J formulation (only in J – A – ϕ) Magnetic Field no current (mfnc) $\rightarrow \phi$ formulation

Variables analyzed:

- Magnetic Field
- Current density distribution
- Losses

REBCO tape carrying current

 $\begin{array}{l} \mathbf{A} - \phi \text{ coupling:} \\ \mathbf{A} \text{ computes the } \mathbf{B} \text{ on } \partial \Omega_{\mathrm{sc}} \text{ and sends (as BC) to } \phi. \\ \mathbf{n} \cdot \mathbf{B} = \mathbf{n} \cdot (\nabla \times \mathbf{A}) \\ \phi \text{ computes the } \mathbf{B} \text{ on } \partial \Omega_{\mathrm{sc}} \text{ and sends (as BC) to } \mathbf{A}. \\ \mathbf{n} \times \mathbf{H} = \mathbf{n} \times (-\nabla \phi) \end{array}$

* The shape function order in ϕ can be linear \rightarrow save computation time in 2D.

REBCO tape carrying current

Material characterization:
• Ω_{ns} :
$\mu = \mu_0 [\text{H/m}]$
$\sigma = 0 [S/m]$
• Ω _{sc} :
$\mu=\mu_0~[{ m H/m}]$
$\sigma = 0 [\text{S/m}]$
• Γ _t :
$\mu=\mu_0~[{ m H/m}]$
$\rho = \frac{Ec}{Jc} \left(\frac{J}{J_c}\right)^n [\Omega.m]$
Superconductor parameters
$E_c = 1 [\mu V/cm]$
$I_c = 300 [A]$
$w_{tp} = 12 \text{ [mm]}$
$t_{sc} = 1[\mu m]$
n = 30

Time solver configuration: f = 10 Hz Simulation with 1 cycle with a 200 time steps.

Applied Current:

 $f(t) = \text{Iap.}\sin(\omega t)$ Iap = {50,60,70,80,90,100,110,120,130,140,150}

Mesh: n] Γ_t : 100 elements $\partial \Omega_{sc}$: 202 elements Other domains: Free triangular mesh with maximum element size 6.7 mm and minimum element size 0.03 mm

Case studies Case studies UERJ UERJ Cut Ω_{nc} CORC cable carrying current rout CORC cable geometry: Γ_{t2} $\partial \Omega_{nc}$ $r_{out} = 3.35 \ [mm];$ $r_{int} = 3.25 \ [mm];$ Γ_{t1} r_{ext} $r_{ext} = 100 \,[mm]$ Cut Ω_{sc} Ω_{nc} $\partial \Omega_{sc}$ 0 Γ_{t3} $\mathbf{A} - \phi$ coupling: A computes the **B** on $\partial \Omega_{sc}$ and sends (as BC) to ϕ . $\mathbf{n} \cdot \mathbf{B} = \mathbf{n} \cdot (\nabla \times \mathbf{A})$ $\int_{\Gamma_t} \mathbf{J} \cdot t_{sc} \, d\Gamma \pm \overline{\phi^{\pm}} = 0 \, (\mathbf{J} - \mathbf{A} - \phi)$ $T_1 = 0 \text{ and } T_2 = \frac{\overline{\phi^{\pm}}}{t_{sc}} \, (\mathbf{T} - \mathbf{A} - \phi)$ ϕ computes the **B** on $\partial \Omega_{sc}$ and sends (as BC) to **A**. $\mathbf{n} \times \mathbf{H} = \mathbf{n} \times (-\nabla \phi)$ * The shape function order in ϕ can be linear \rightarrow save computation time in 2D.

11/18

CORC cable carrying current

Material characterization:

• Ω_{ns}:

 $\mu = \mu_0 \text{ [H/m]}$ $\sigma = 0 \text{ [S/m]}$

• Ω_{sc}:

$$\mu = \mu_0 \text{ [H/m]}$$

$$\sigma = 0 \text{ [S/m]}$$

• Γ_{t1} and Γ_{t2} and Γ_{t3} :

$$\mu = \mu_0 \text{ [H/m]}$$
$$\rho = \frac{Ec}{Jc} \left(\frac{J}{J_c(\mathbf{B})}\right)^n [\Omega.m]$$

Superconductor parameters:

$$E_c = 1 \, [\mu V/cm]$$

 $I_c = 235 \, [A]$
 $w_{tp} = 4 \, [mm]$

$$t_{eq} = 1[\mu m]$$

n = 33

Case studies

Time solver configuration: f = 36 Hz Simulation with 1 cycle with a 300 time steps.

Applied Current: $f(t) = N_{tapes} Iap. sin(\omega t)$ $N_{tapes} Iap = \{100, 110, 120, 130, 140, 150\}$

Mesh:

 Γ_t : 200 elements

Other domains: Free triangular mesh with maximum element size 13.4 mm and minimum element size 1.3 mm

Anderson-Kim model

$$J_{c}(\mathbf{B}) = \frac{J_{c0}}{\left(1 + \sqrt{\frac{\kappa^{2}B_{\parallel}^{2} + B_{\perp}^{2}}{B_{0}^{2}}}\right)^{b}}$$

Results

REBCO tape carrying current

Measurements: B. Shen ert al. Investigation and comparison of AC losses on stabilizer-free and copper stabilizer HTS tapes. Physica C: Superconductivity and its Applications, 541:40–44, 2017.

Formulation	R ² Losses (%)	DoFs	Computation times (s)
J - A	95.781	7969	80
$\mathbf{J} - \mathbf{A}^*$	95.786	27567	218
$\mathbf{J} - \mathbf{A} - \phi$	95.581	3125	40
$\mathbf{J} - \mathbf{A}^* - \boldsymbol{\phi}$	95.579	5347	41
$\mathbf{T} - \mathbf{A}$	94.642	7970	125
$\mathbf{T} - \mathbf{A}^*$	94.642	27568	368
$\mathbf{T} - \mathbf{A} - \phi$	93.648	3126	44
$\mathbf{T} - \mathbf{A}^* - \boldsymbol{\phi}$	93.723	5348	52

Considering a 3-component case (3D applications) $J - A^* - \phi$ is faster than $J - A^*$ 81.2%.

Considering a 3-component case (3D applications) $T-A^*-\phi$ is faster than $T-A^*$ 85.06%

A – only Az is computed

Results

15/18 0 * The shape function order in ϕ linear \rightarrow save computation time in 2D.

A 73.1

Results

CORC cable carrying current

Formulation	R ² Losses (%)	DoFs	Computation times (s)
J – A	99.999	43333	494
$J - A - \phi$	99.998	29219	224
$\mathbf{T} - \mathbf{A}$	Reference	43336	889
$\mathbf{T} - \mathbf{A} - \boldsymbol{\phi}$	99.995	29326	716

 $J - A - \phi$ is faster than J - A 54.65%.

 $\mathbf{T} - \mathbf{A} - \phi$ is faster than $\mathbf{T} - \mathbf{A}$ 19.46%

Conclusion

- 1. The introduction of the magnetic scalar potential in the T-A and J-A formulation was presented.
- 2. For REBCO:

A good agreement in the losses computing was obtained for all formulations (All results with $R^2 \ge 93\%$).

An excellent agreement between the magnetic flux density and current density ($R^2 \ge 95\%$)

Considering the three components of the magnetic vector potential the $J - A - \phi$ formulation is 81% faster than the J - A, on the same way the $T - A - \phi$ is faster 85% than the T - A. Comparing the $J - A - \phi$ and the $T - A - \phi$, the $J - A - \phi$ is faster 21%.

3. For CORC cable

Using the T-A formulation as a reference, an agreement higher 99% was obtained for all compared variables.

 $J - A - \phi$ is faster than J - A 54.65%.

 $\mathbf{T} - \mathbf{A} - \phi$ is faster than $\mathbf{T} - \mathbf{A}$ 19.46%.

Conclusion

Conclusion

Thank you so much!

Contact: gabriel.santos@eng.uerj.br