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Parameter-free reconstruction of HTS critical current magnetic 
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Problem

2G: Super Power SCS4050-AP 99A

1G: AMSC BiSCCO 150A

No. Model Equation

1 Kim-like Ic 𝜃, 𝐁 = 𝐼𝑐0
1

1 +
𝐁
𝐵𝑐0

𝜀 𝜃

𝑏

2
Magneto-angular 

anisotropy
Ic 𝜃, 𝐁 = 𝐼𝑐0

1

1 +
𝐁
𝐵𝑐0

𝛼

𝜀 𝜃

𝑏

3 Percolation Ic 𝜃, 𝐁 = 𝐼𝑐0 ⋅ exp −
𝐁

𝐵𝑐0

𝛼

𝜀𝑏 𝜃

𝛆(𝜽)

𝜀1 𝜃 = 𝑘2 cos2 𝜃 + sin2 𝜃

𝜀2 𝜃 = 𝑘2 cos2 𝜃 + 𝑙2sin2 𝜃
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Kim-like model
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𝑦 𝑡 = 2 ⋅ cos 2𝜋 ⋅ 50 ⋅ 𝑡 + cos 2𝜋 ⋅ 650 ⋅ 𝑡

Signal decomposition

Fourier Series (FS)

𝑦 𝑡 = 𝑌0 +

𝑛=1

∞

𝐴𝑛 cos 𝑛𝜔𝑡 + 𝐵𝑛sin(𝑛𝜔𝑡)

Oscillatory signal

Frequency domain

𝑦[𝑘] = 𝑌0 +

𝑛=1

∞

𝐴𝑛 cos 𝑛𝜔 ⋅ Δ𝑡 ⋅ 𝑘 + 𝐵𝑛sin(𝑛𝜔 ⋅ Δ𝑡 ⋅ 𝑘)
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𝑦 𝑡 = 2 ⋅ cos 2𝜋 ⋅ 50 ⋅ 𝑡 + cos 2𝜋 ⋅ 650 ⋅ 𝑡

Signal decomposition

Fourier Series (FS)

𝑦 𝑡 = 𝑌0 +

𝑛=1

∞

𝐴𝑛 cos 𝑛𝜔𝑡 + 𝐵𝑛sin(𝑛𝜔𝑡)

Oscillatory signal

𝐲 = 𝚿𝐚

Signal reconstruction:

𝚿 𝐚𝐲

=

Discrete Cosine Transform (DCT) basis: 𝚿

𝑦[𝑘] = 𝑌0 +

𝑛=1

∞

𝐴𝑛 cos 𝑛𝜔 ⋅ Δ𝑡 ⋅ 𝑘 + 𝐵𝑛sin(𝑛𝜔 ⋅ Δ𝑡 ⋅ 𝑘)
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Signal decompositionHTS tape measurement

Frequency domain

Some observations:
• Difficulty of making fine measurements.
• Nyquist-Shannon sampling theorem limits

amount of information, however...
• The amplitudes are not sparse at all!
• What if sines and cosines are not the best 

functions (basis) for describing the problem?



Department of Power Electronics, Electrical Drives and Robotics,
Faculty of Electrical Engineering, Gliwice, Poland             kener.elektr.polsl.pl |   kener.eu   |    kener.pl 7

Finding optimal basis – snapshot matrix

https://htsdb.wimbush.eu/ - High-temperature superconducting wire critical current database

Data base content:
• 22 HTS tapes – 1G and 2G
• 𝐼𝑐(θ; 𝐁; 𝑇)
• 𝑛(θ; 𝐁; 𝑇)
• Temperature range: 15K – 90K
• Field range: 0T – 8T
• Angle range: 0o – 240o (49 points)
• 5000 valid data sets

Snapshots

𝐗

5o
0o

10o

15o

240o

𝑈 = 𝑈𝑐
𝐼

𝐼𝑐(θ; 𝐁; 𝑇)

𝑛(θ;𝐁;𝑇)

Constitutive law:

https://htsdb.wimbush.eu/
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Singular value decomposition (SVD)

𝐗 = 𝐔 ⋅ 𝚺 ⋅ 𝐕T

Modes

Singular
values

Dynamics

Snapshots

=

𝐔T𝐔 = 𝐈

𝐔𝐔T = 𝐈

𝐕T𝐕 = 𝐈

𝐕𝐕T = 𝐈

𝐗 ∈ ℝ𝑛×𝑚 𝐔 ∈ ℝ𝑛×𝑚 𝚺 ∈ ℝ𝑛×𝑛
𝐕T ∈ ℝ𝑚×𝑛Properties:

𝐔 and 𝐕 are orthonormal!
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Singular values truncation

Singular
values

𝚺

𝑆(𝑟) =
σ𝑖=0
𝑟−1𝜎𝑖

σ𝑖=0
𝑛−1𝜎𝑖

The optimal hard threshold for singular values is 4/√3, by M. Gavish and
D. L. Donoho, IEEE Transactions on Information Theory, 2014
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Singular value decomposition (SVD)
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Modes

Singular
values

Dynamics

Snapshots

=
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𝐗 = 𝐔 ⋅ 𝚺 ⋅ 𝐕T

෩𝐗 = ෩𝐔 ⋅ ෩𝚺 ⋅ ෩𝐕T

෩𝐗 = ෩𝐔 ⋅ 𝐀

Singular value decomposition (SVD)

Modes

Singular
values

Dynamics

Snapshots

=

෩𝐗 ∈ ℝ𝑛×𝑚 ෩𝐔 ∈ ℝ𝑛×𝑟 ෩𝚺 ∈ ℝ𝑟×𝑟 ෩𝐕T ∈ ℝ𝑟×𝑛

𝚿 = ෩𝐔

New optimal basis!

𝐱 = ෩𝐔 ⋅ 𝐚

𝐲 = 𝚿 ⋅ 𝐚

We’ve seen that before...

Full matrix
approximation

Full matrix

𝐀 = ෩𝚺 ⋅ ෩𝐕T

Approximation
by amplitudes

Single column
approximation
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Tailored (optimal) basis: 𝚿
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𝚯 𝐚𝐲

=

Sparse measurements
optimal measurement points

𝐲 = 𝚿 ⋅ 𝐚

𝐂 ⋅ 𝐲 = 𝐂 ⋅ 𝚿 ⋅ 𝐚 𝐲 = 𝚯 ⋅ 𝐚

𝚿 𝐚𝐲

=

𝐂𝐂

Full measurements 𝒚:

Primary task: Find measurement matrix 𝐂 that is sparse and rank 𝑟.

Matrix 𝚯 is a square matrix! 

Matrix 𝚯 is a square matrix! 
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𝐲 = 𝚿 ⋅ 𝐚

𝚿 = 𝐐 ⋅ 𝐑 ⋅ 𝐏 QR-decomposition with pivoting
(rank-revealing QR-decomposition)

𝚿 𝐐 𝐑 𝐏

=

𝐂 = 𝐏𝑇
Number of points

equal to 𝑟

𝐚 = 𝚯−1 ⋅ 𝐲

Calculate amplitudes of modes

0o, 40o, 75o, 85o, 90o, 95o, 100o, 
105o, 115o, 135o, 195o, 240o

Reconstruct signal

Sparse measurements
optimal measurement points
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Sparse measurements – algorithm

𝐲 = 𝚿𝐚

1. Create snapshot martix 𝐗

2. Singular Value Decomposition

3. SVD truncation

4. Make new basis

5. Find optimal measurement points

7. Perform measurements at optimal angles

8. Find amplitudes

9. Reconstruct

𝐚 = 𝚯−1 𝐲

𝐲

𝚿 = 𝐐 ⋅ 𝐑 ⋅ 𝐏 𝐂 = 𝐏T
𝚿 = ෩𝐔

෩𝐗 = ෩𝐔 ⋅ ෩𝚺 ⋅ ෩𝐕T

𝐗 = 𝐔 ⋅ 𝚺 ⋅ 𝐕T

Compute once – save and load when needed!

Measure

Compute every time

6. Calculate reconstruction matrix 𝚯 = 𝐂 ⋅ 𝚿
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Sparse measurements - results

Critical current
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Critical current density

Sparse measurements - results

Current density obtained using method described in: Zermeño, V. M., Habelok, K., Stępień, M., & Grilli, F. (2017). A parameter-free method to extract the superconductor’s Jc (B, θ) field-dependence from in-field current–voltage characteristics of 
high temperature superconductor tapes. Superconductor Science and Technology, 30(3), 034001
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Index-value 𝑛

Sparse measurements - results
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Critical current (shifted by 90o)

Sparse measurements - results
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Summary

• It is possible to reconstruct signal based only on few measurements.

• Function/vector basis can be tailored to the problem.

• Method is sensitive to signal shifts due to chosen basis.

• Span of reconstructed signal depends on span of snapshots and therefore basis.

• The model doesn’t provide analytical description i.e. Kim-model:

• Signals can be compared only by mode amplitudes:

• Model is viable for interpolation only.

Ic 𝜃, 𝐁 = 𝐼𝑐0 1 +
𝐁

𝐵𝑐0
𝜀 𝜃

−𝑏

𝐚


