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Many superconducting applications
contain coils

High magnetic field magnets
MRI
Material research
Fusion



Resistive high-field magnets
are highly energy-consuming

REBCO
superconducting
Insert

Resistive
outsert

High-field magnet
from CNRS Grenoble

= | }
10 Tto 18 T resistive field
for test & development




Full superconducting magnets
have advantages

4
Z

LTS With LTS outsert:
Low energy consumption
HTS High field stability
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Full superconducting magnets

have advantages

Z

A

HTS

LTS

With LTS outsert:
Low energy consumption
High field stability

SuperEMFL project designs:
32 T magnet
40 T magnet



Design requires fast and accurate
computer modelling

Electromagnetic response and screening currents
Thermal quench stability

Mechanical properties during quench
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Metal-insulated enables s

radial currents

Radial currents prevent damage
during electrothermal quench




Electromagnetic modelling
Electro-thermal quench

Mechanical stress during quench



Electromagnetic modelling
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Mechanical stress during quench



Electromagnetic modelling
Axi-symmetric variational method
Benchmark
REBCO insert

Electro-thermal quench

Mechanical stress during quench



Electromagnetic modelling
AXxi-symmetric variational method
Benchmark
REBCO insert

Electro-thermal quench

Mechanical stress during quench



Spiral coil behaves

almost like axi-symmetric ERET
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How to model non-insulated coils in 2D:

we Impose current conservation

normal
axial conductor superconductor
direction T

—>
—>
—>

—p T —
Y (o) 'S —
—p T ) —

radial direction

At each turn:

I=1,+1,

\

input current



How to model non-insulated coils in 2D:
we Impose current conservation

normal At each turn:
axial conductor superconductor

direction | = |r+ |

¢
» w
E E E E E input current
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radial direction






Homogenized model element by element

In angular direction:
Superconductor in parallel with metal

In radial diection:
Superconductor in series with metal

Enables to model either:
all turns one by one
or
homogenized pancake coil






‘nuper

S CTCaN

Minimum Electro Magnetic
Entropy Production (MEMEP)

Solving the equations

AA
EJ) = -~ V¢ V-J=0

IS the same as minimizing the functional

J change between
two time instants

AA AA, Non-linear
/ dv [2 4

A7 + A7 + Vo -J| EQ)relation

E Pardo, M Kapolka 2017 J Comp. Phys. U(J) / dJ’ @


https://www.sciencedirect.com/science/article/abs/pii/S0021999117303704

Electromagnetic modelling
AXxi-symmetric variational method
Benchmark
REBCO insert

Electro-thermal quench

Mechanical stress during quench
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Benchmark double pancake coil e
(EmEE

Number or turns per pancake: 200

Radial resistance between turns: 5-107° Qm?
Ramp rate: 1 A/s

Input current: 400 A

Pancake separation: 500 um

Numerical models:
MEMEP (IEE Slovakia)
MATLAB with ODE coupling (CEA France)
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Results between models agree
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A-V formulation
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MEMEP
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Results between models agree

A-V formulation

[de]

o [A]

W ~ U 3~

loy = 2mr X (tape width) X /.



Electromagnetic modelling
AXxi-symmetric variational method

Benchmark

REBCO insert
Electro-thermal quench

Mechanical stress during quench



32 T insert baseline design

Inner diameter: 25 mm

Outer diameter: 102.5 mm

Number of pancakes: 16

Number of turns per pancake: 250

Background magnetic field: 19 T

Turn-to-turn resistance: 106, 107, 108, 10° Q m?
metal-insulatild / l \soldered

non-insulated

HTS

Super

oy /:\), v

LTS
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Magnet charge and discharge profile ool dpl¥
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Screening currents are significant
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Screening currents are significant
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Screening currents are significant
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Screening currents are significant
Soldered

Ml
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Input current:
333 A

Screening currents
Increase with
contact resistance



Radial currents are present

Soldered
10° Om

Ml
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Input current:
333 A

Radial currents decrease
with contact resistance

E Pardo, P Fazilleau 2024
SuST


https://iopscience.iop.org/article/10.1088/1361-6668/ad1c6f/meta
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Screening currents are the same
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Input current: 333 A

After relaxation:

Screening currents
iIndependent from
contact resistance
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Computing time
of non-insulated coil

Mutual inductances:
210 s

Time evolution inlcuding relaxation:
150 s

Faster than real-time opearation!



Electromagnetic modelling
Electro-thermal quench

Mechanical stress during quench



Electromagnetic modelling

Electro-thermal quench
Finite difference method
Electro-thermal quench

Force on LTS outsert

Mechanical stress during quench



Electromagnetic modelling

Electro-thermal quench
Finite difference method
Electro-thermal quench

Force on LTS outsert

Mechanical stress during quench
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Finite Difference method (FD)

Heat diffusion equation

thermal conduct|V|ty

heat capacity T) — = V(®/ T)VT )

per unit volume
power loss

per unit volume

Solved using Explicit Discretization
and Euler’s time integration
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Discretization

Variables:
temperature at cells

JERJRY: % s%— Ay, Heat conductivity
- evaluated at surfaces

R e
R j_% X * x We glso tgke |
y | ; ; liquid helium cooling
1 i L R e D S into account
I PO N P
> I l—z i 1+E I
X i1 i i+1
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Cooling by liquid Helium .

h - LHe heat transfer coefficient
used for FEM calculations

10000
] @6/%
% I
v % \ -
5 G -
£ 1000 L \ T— We use ‘up’ curve for now
= :

100 - .
] - - - — Reference:

G. Vandoni, CERN
L. Kopera, IEE-SAV

| 10
[K]

surface



Discretization

: A%
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y A B B : '
R at previous time step
X 1:1 B i aE 1-II-1
Tn+1 _ Tn + At TH‘l J k 7111 J o 77%“3 . Ti_%*j k T” 71;11:3'
A AT ity Tii re:  Tmlp
‘U‘L_j' 1,7 ?,,j’ t+1,7 = 11g 2, 1,7 i—1,3
+L|:k N T?ngrl—T?zj_k _ lT;zj—T?zj 1]
Coi jAZ%J Z,Z,MH_E Z%}J—Fl < (N ST Z%J”’ Z%J—l
Atp? : .
+ J A Dadhich et al. arXiv:2402.04034

Co,i,j


https://arxiv.org/abs/2402.04034

Stability condition

C,(T)'min (Ax?, Ay?)
2k (T)

dt <

May require many timesteps!
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Why Finite difference?

Explicit Finite Difference is fast and simple to implement
Lot of timesteps required, but MEMEP is fast!
Our in-house software in C++

Variable timestepping: Different timesteps for MEMEP & FD!



Coupling Electro-Magnetic

and Electro-Thermal Models

Calculates J
Madifies p(J)
4

Electro-Magnet
Solver

»

Calculates T
Modifies J (T)

4

Electro-Thermal
Solver

| 2

Super)



Coupling Electro-Magnetic
and Electro-Thermal Models

Time Evolution Loop (t:= t+At)

Calculates J
Madifies p(J)
v 4
Electro-Magnet
Solver

| ¢ | 4

Calculates T
Modifies J (T)

Electro-Thermal

Solver




Electromagnetic modelling

Electro-thermal quench
Finite difference method
Electro-thermal quench

Force on LTS outsert

Mechanical stress during quench



HTS insert interacting with LTS outsert

Geometry of NOUGAT insert

Pancakes: 18

Turns per pancake: 290
REBCO tape: Fujikura HTS
Turn-to-turn resistance: 10 Qm? I

LTS

Operating current: 314.3 A
Voltage limitation: 1 V

LTS outsert: OXFORD 19 T, 150 mm bore
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Damaged turns appear
- PP e

after charging the magnet
A Time where damaged
i(t) turns appear
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Temperature evolution after degradation

4.5 ms

Damaged homogenized turn: 90 % reduction of J,

Voltage limitation:
1V

Operating
current:
314.3 A



Temperature evolution after degradation

4.5 ms 6.5 ms

Damaged homogenized turn: 90 % reduction of J,

Voltage limitation:
1V

Operating
current:
314.3 A



Temperature evolution after degradation

4.5 ms 6.5 ms 24 ms

Damaged homogenized turn: 90 % reduction of J,
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Voltage limitation:
1V

Operating
current:
314.3 A



Temperature evolution after degradation

4.5 ms 6.5 ms 24 ms 31.5ms

Damaged homogenized turn: 90 % reduction of J,

Super
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Voltage limitation:
1V

Operating
current:
314.3 A
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Temperature evolution after degradation g
EMEC

4.5 ms 6.5 ms 24 ms 31.5ms 49 ms

% Voltage limitation:
80 1V
5 70
Operating
1% current;

5o 314.3A

|_

40

Fast quench due to

B 30 i
e electrpmagnetlc
20 coupling
| -
o

Damaged homogenized turn: 90 % reduction of J,



Voltage limitation reduces total current o A

350 . ; .

mn {o0tal cUTTEN YT
angular current Voltage limitation:
radial current i

1V

300

250

200 f

150 |

100

average current in cross-section [A]
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time after degradation [g]
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Radial currents -
EMFL

4.5 ms 6.5 ms 24 ms 31.5ms 49 ms

200 .. .
Voltage limitation:
150 1V
+ 100
- Transfer
z toradial current
o & atdamaged turn
. S
N Strong negative
—

=
o
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radial currents
due to decrease
iIn magnetic flux

o
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Angular current density -

4.5 ms 6.5 ms 24 ms 31.5ms 49 ms

Voltage limitation:
— — —= 2x10°
i - —| _— 1 1x10° :
= - Screenlng currents
S— — Speed-up quench
0o =
— - <
: . They cause
:___a ——— —'lx‘IO9 addlthna| AC IOSS
—= r —=
- -2x10°




What happens without screening currents?

4.5 ms 6.5 ms 24 ms 31.5ms 49 ms
1x10°

Voltage limitation:
1V

Quench propagates
slower

Increase in current
— at pancakes where
guench propagates

-1x10°




Temperature evolution after degradation

4.5 ms

6.5 ms

24 ms

31.5ms

49 ms

Super

e

‘e M/E L
Gt A G

Voltage limitation:
1V

Quench propagates
slower
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Faster quench with screening currents N
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4.5 ms 6.5 ms 24 ms 31.5ms 49 ms

Voltage limitation:
1V




Quench propagates faster
with screening currents

volume average temperature [K]
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Electromagnetic modelling

Electro-thermal quench
Finite difference method
Electro-thermal quench

Force on LTS outsert

Mechanical stress during quench



Screening currents reduce
force on LTS during quench

axial force at LTS [N]
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Cooling by liquid helium
has no impact

axial force at LTS [N]
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Electromagnetic modelling
Electro-thermal quench

Mechanical stress during quench



Electromagnetic modelling
Electro-thermal quench

Mechanical stress during quench
Finite elements method

Results during quench



Electromagnetic modelling
Electro-thermal quench

Mechanical stress during quench
Finite elements method

Results during quench



General equations

Governing equation:

V-(De) Hf)=0

stiffness matrix strain body force density
Lorentz force: fL=]XB
Thermal stress: ft = -V (E 5t) thermal strain

e

@
N



With axial symmetry

Governing equations:

Elastic assumption:

Strains and displacements: & = Ep =& =71z = +

Displacements are state variables
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Our own finite element method

? Boundary conditions:
e e Fixed lower axial displacement
= —— Programmed in MATLAB
0 - T
o Bl Very fast
r = R;n T = Rout

Only few seconds!

AK Srivastava, E Pardo 2024 SuST


https://iopscience.iop.org/article/10.1088/1361-6668/ad4a34/meta

Mechanical model coupled one-way

Electromagnetic — Thermal [RES(EE density» Mechanical model
model Temperature




Electromagnetic modelling
Electro-thermal quench

Mechanical stress during quench
Finite elements method

Results during quench
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Faster quench with screening currents N
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4.5 ms 6.5 ms 24 ms 31.5ms 49 ms

Voltage limitation:
1V




Radial stress evolution TR~
45ms  65ms 24ms  315ms 87.3ms 0r(MPa)

50
40 Radial stress
30 Increases at pancakes
where quench
20 propagates
10 : .
Tensile radial stress
o could detach turns
-10 Increased
radial stress at quench
-20
should be compensated
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Hoop stress evolution -
4.5 ms 6.5 ms 24 ms 31.5ms o,(MPa)
I Hoop stress
1400 increases at pancakes
where quench
1350 propagates
1300
Maximum hoop stress
| 250 is roughly the same

200

150




Conclusion



Multi-physics modelling
of high-temperature superconductors

You can use axi-symmetric model for metal-insulated coils
Fast and accurate electromagnetic modeling
Fully coupled electro-thermal model with screening currents

Effect of strongly damaged turn:

Electrothermal quench propagates electromagnetically

Screening currents speed-up electrothermal quench



Super

Multi-physics modelling
of high-temperature superconductors

Fast and accurate electro-thermo-mechanical modelling
Increased stress due to screening currents

Thermal stress during quench could be problematic
If not compensated



Thank you for
your attention!



Would you like
to know more?

enric.pardo@savba.sk









Baseline 32 T pre-design

REBCO tape: Fujikura

Number of pancakes: 16

Turn-to-turn resistance: 107 Qm?
Background magnetic field: from 19 T LTS
Thermal expansion coefficient: 106 K-1
G-10 pancake spacer: 0.5 mm

Confidential

(Super)

(EmEL)




General equations

Governing equation: V-(De) +Hf1=0

stiffness matrix strain body force density

Lorentz force: fro=]XB
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Current densit 50
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Screening currents
Increase stress

Negative hoop stress regions
at remanence

Might cause buckling

i()]

) tr trel tr l trel
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Screening Current
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Screenlng currents . . —— 50
INnCrease stress |40
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Shear stress
might be problematic

Maximum shear stress at
remanence

Screening Current

—-20
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—40

—50

- 1

tr tre! tr l trel
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Screening currents are important

maximum
at winding

[normalized
guantity]
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t=t, Opr (MPa)
Nop=00 - nob::lo0 50

Overbanding reduces radial stress
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15p=100 o0y (MPa)
: 440

Overbanding reduces hoop stress
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BC: Lower axial displacement fixed






Thermal diffusion equation

Thermal energy

T
Ur(T) = / dT Heat capacity
0

by

Heat Thermal conductivity
generation tensor



Variational principle

Solving

Uy
E-J=—7 -V (kVT)

IS the same as minimizing

LT—/dV’ UT@?T]—+ “VITRVT T E J}
W(T) =

Temperature

dT' Ur(T") at previous time step
0
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Finite Element Model e
<
hy 1 J Z = Zmaz
Rin > Rout e e
Number of .
turns (ng) 0 Z = Zmin )







Electromagnetic modelling
Axi-symmetric variational method
Benchmark
REBCO insert

Electro-thermal quench
Finite difference method
Electro-thermal quench

Force on LTS outsert

Mechanical stress during quench

Finite elements method



