Electrothermal modeling of HTS coils using homogenization and different formulations

<u>A. Dadhich</u>^a, F. Grilli^b, K. Berger^c, G. Hajiri^c, F. Trillaud Pighi^d, D. Sotnikov^e, T. Salmi^f, G. dos Santos^g, B. M. O. Santos^g, F. G. R. Martins^h, T. Benkelⁱ, A. Hussain^a, E. Pardo^a

a Institute of Electrical Engineering, Slovak Academy of Sciences, Bratislava, SLOVAKIA

b Karlsruhe Institute of Technology, Karlsruhe, GERMANY c Université de Lorraine, GREEN, Nancy, FRANCE d Instituto de Ingeniería, UNAM, Mexico City, MEXICO

e Paul Scherrer Institut PSI, Villigen, SWITZERLAND

f Tampere University, Tampere, FINLAND

g Rio de Janeiro State University, Rio de Janeiro, BRAZIL

h Universidade Federal Fluminense, Rio de Janeiro, BRAZIL

i Atled Engineering, Oxford, UK

Current applications

MRI machines

High field magnets

Particle accelerators

Wind generator

Electric aircraft

Future applications

Hyperloop

Space propulsion

Racetrack coil

Pancake coil

Application: Rotating machines, high field magnets

Motivation

Modeling superconductors is tough and time consuming

Complicated non-linear multiphysics (specially for quench analysis) Need for a fast and efficient method

Developed a novel and fast homogenization method!

Development and benchmark of various numerical models 14 models or combinations for different cases!

Collaboration between research teams within superconductor community 8 countries, 9 institutes!

Electrothermal modeling of HTS coils using homogenization and different formulations

<u>A. Dadhich</u>^a, F. Grilli^b, K. Berger^c, G. Hajiri^c, F. Trillaud Pighi^d, D. Sotnikov^e, T. Salmi^f, G. dos Santos^g, B. M. O. Santos^g, F. G. R. Martins^h, T. Benkelⁱ, A. Hussain^a, E. Pardo^a

a Institute of Electrical Engineering, Slovak Academy of Sciences, Bratislava, SLOVAKIA

b Karlsruhe Institute of Technology, Karlsruhe, GERMANY c Université de Lorraine, GREEN, Nancy, FRANCE d Instituto de Ingeniería, UNAM, Mexico City, MEXICO

e Paul Scherrer Institut PSI, Villigen, SWITZERLAND

f Tampere University, Tampere, FINLAND

g Rio de Janeiro State University, Rio de Janeiro, BRAZIL

h Universidade Federal Fluminense, Rio de Janeiro, BRAZIL

i Atled Engineering, Oxford, UK

Institute of Electrical Engineering, Slovak Academy of Sciences Bratislava, Slovakia

Problem statements

Material properties

Numerical models

Benchmark results

Problem statements

Material properties

Numerical models

Benchmark results

Racetrack coil

Application: Rotating machines

Tape geometry

5 tapes

Width= 4 mm Initial temperature = 77 K Critical temperature = 92 K Initial $J_c = 1.875 \times 10^{10} \text{ A/m}^2$ Homogenized C_w k, and ρ

Electrical insulation between turns via Stycast

Input : AC current (170 A and more, 5 Hz)

Pancake coil (axisymmetric assumption)

Application: High field magnets

Tape geometry

5 tapes

Width= 4 mm Initial temperature = 77 K Critical temperature = 92 K Initial $J_c = 1.875 \times 10^{10} \text{ A/m}^2$ Homogenized C_w k, and ρ

Electrical insulation between turns via Stycast

Input : Current ramp (1 A/s) up to 160 A and more

By Dr. Frederic Sirois Polytechnique Montreal **Problem statements**

Material properties Homogenization

Numerical models

Benchmark results

Electrical and thermal properties

Material	Thickness [µm]	$k \; [{\rm W}{\rm m}^{-1}{\rm K}^{-1}]$	${\rm C}_p \ [{\rm Jkg}^{-1}{\rm K}^{-1}]$	$\rho~[\Omega{\rm m}]$	$\rho_m \; [\rm kgm^{-3}]$
HTS	2	9	156.65	$3 imes 10^{-7}$	6390
Ag	4	400	235	$1 imes 10^{-8}$	10500
Hastelloy	100	7	425	$1.2 imes 10^{-6}$	8940
Stycast	50	0.8	138.6	$1 imes 10^{13}$	2290
Copper	20	489.56	195.98	2.288×10^{-9}	8960

Considered constant for simplification

Problem statements

Material properties Homogenization

Numerical models

Benchmark results

Homogenization of layers

Include Stycast or not?

Homogenized electrical properties

Homogenized thermal properties

Thermal capacity

$$C_{v,hom} = \frac{d_{HTS}C_{v,HTS} + d_{Ag}C_{v,Ag} + d_{hast}C_{v,hast} + d_{sty}C_{v,sty}}{d_T}$$

Mass density

$$\rho_{m,hom} = \frac{d_{HTS}\rho_{m,HTS} + d_{Ag}\rho_{m,Ag} + d_{hast}\rho_{m,hast} + d_{sty}\rho_{m,sty}}{d_T}$$

 $C_p = C_v / \rho_m$

Anisotropic conductivity

$$k_x = \frac{d_T}{\left(\frac{d_{HTS}}{k_{HTS}} + \frac{d_{Ag}}{k_{Ag}} + \frac{d_{hast}}{k_{hast}} + \frac{d_{sty}}{k_{sty}}\right)}$$

$$k_y = \frac{d_{HTS} \cdot k_{HTS} + d_{Ag} \cdot k_{Ag} + d_{hast} \cdot k_{hast} + d_{sty} \cdot k_{sty}}{d_T}$$

Problem statements

Material properties

Numerical models

Benchmark results

Different formulations and combinations

- **H** + FEM : For racetrack and pancake coils (Homogenized method).
- H-A, + FEM : For racetrack coil (Detailed and Homogenized methods).
- $H-\phi$ + FEM : For racetrack and pancake coils (Detailed and Homogenized methods). The racetrack coil results use GetDP and the pancake coil results uses COMSOL for this combination.
- J-A, + FEM : For racetrack coil (Homogenized method).
- MEMEP + FD : For racetrack and pancake coils (Homogenized method).
- MEMEP + METEP : For racetrack coil (Homogenized method).
- T-A + Equivalent lumped circuit : For racetrack coil (Homogenized method).

Coupling

Standard mesh and inputs

Mesh elements in tape thickness: 1 Mesh elements in tape width: 50

Time step per cycle: 200 (racetrack) Time step per second: 20 (pancake)

Problem statements

Material properties

Numerical models

Benchmark results Racetrack coil (Detailed vs Homogenized models) Racetrack coil (Homogenized models) Pancake coil (Detailed vs Homogenized models)

Racetrack coil

Only minimum temperature is affected with Stycast in homogenization

Very good agreement in maximum and average temperatures

Maximum temperature matters for studies like quench

Detailed model predicts quench slightly earlier?

Problem statements

Material properties

Numerical models

Benchmark results Racetrack coil (Detailed vs Homogenized models) Racetrack coil (Homogenized models) Pancake coil (Detailed vs Homogenized models)

170 A (adiabatic)

Very good agreement!

170 A (cooling)

Very good agreement!

Total Power

170 A (adiabatic)

170 A (cooling)

180 A (adiabatic)

Minor difference due to mesh

Good agreement!

180 A (cooling)

Some homogenized models also predict quench at 1.85 s, like detailed models!

Differences arise between models But why?

Avg Temperature [K]

1 % difference in power accuracy initiates quench differently

1 % difference in power accuracy initiates quench differently

Even a very small difference in models can be important for some cases!

Total power

Average temperature

190 A (cooling)

Problem statements

Material properties

Numerical models

Benchmark results Racetrack coil (Detailed vs Homogenized models) Racetrack coil (Homogenized models) Pancake coil (Detailed vs Homogenized models)

Pancake coil

Adiabatic case

Quench is initiated faster due to tougher conditions (even after including copper!)

Very good agreement!

Cooling case

Quench is predicted slightly earlier than detailed model

Avg Temperature [K]

Very good agreement!

Various models are benchmarked for homogenized method Very good agreement with detailed method Very good agreement between each other

Including Stycast in homogenization only affects minimum temperature

Even 1-2% difference between models can affect quench prediction

Future work

More development of models and comparison with experiments Publication of paper (stay tuned!)

Join our collaboration or questions? Contact: ©

Anang Dadhich and Enric Pardo Institute of Electrical Engineering Slovak Academy of Sciences Bratislava, Slovakia anang dadhich@savba.sk Francesco Grilli Karlsruhe Institute of Technology Karlsruhe, Germany <u>francesco.grilli@kit.edu</u> Louis Denis, Benoit Vanderheyden and Christophe Geuzaine Montefiore Institute University of Liege Liege, Belgium louis.denis@uliege.be

Kévin Berger and Gabriel Hajiri Université de Lorraine, GREEN, F-54000, Nancy, France gabriel.hajiri@univ-lorraine.fr

> Tiina Salmi Tampere University Tampere, Finland tiina.salmi@tuni.fi

Frederic Trillaud Universidad Nacional Autonoma de Mexico CDMX, Mexico ftrillaudp@iingen.unam.mx

> Dmitry Sotnikov Paul Scherrer Institute Wurenlingen, Switzerland dmitry.sotnikov@psi.ch

Barbara M.O. Santos, Gabriel dos Santos, and Flavio Martins Universidade Federal Fluminense Rio de Janeiro State university Rio de Janeiro, Brazil barbara.santos@eng.uerj.br

> Tara Benkel Atled Engineering Oxford, UK tara.benkel@atledengineering.com

Thank you!

Questions?

Extras

180 adia total power

